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ABSTRACT 

Systematic spatial and temporal fluctuations are a fundamental part of any biological 

process. For example, lateral diffusion of membrane proteins is one of the key mechanisms in 

their cellular function. Lateral diffusion governs how membrane proteins interact with 

intracellular, transmembrane, and extracellular components to achieve their function. Herein, 

fluorescence-based techniques are used to elucidate the dynamics of receptor for advanced 

glycation end-products (RAGE) and integrin membrane proteins.  

RAGE is a transmembrane protein that is being used as a biomarker for various 

diseases. RAGE dependent signaling in numerous pathological conditions is well studied. 

However, RAGE lateral diffusion in the cell membrane is poorly understood. For this 

purpose, effect of cholesterol, cytoskeleton dynamics, and presence of ligand on RAGE 

lateral diffusion is investigated. RAGE diffusion in the cell membrane is probed with 

fluorescence recovery after photobleaching (FRAP) and single particle tracking (SPT). The 

ensemble diffusion measurement of RAGE with FRAP indicated that RAGE diffuses freely 

in the cell membrane with a large mobile fraction. Also, a decrease in the mobile fraction is 

observed when the actin cytoskeleton dynamics are altered with cytoskeletal drugs 

cytochalasin-D and Jasplakinolide. Further, RAGE signaling is observed to be dependent on 

an intact actin cytoskeleton in cells. On the other hand, confined diffusion of RAGE is 

measured when the lateral diffusion is probed one protein at a time with SPT. Methylglyoxal 

modified-bovine serum albumin (MGO-BSA) is used as a RAGE ligand to study how the 

presence of ligand affects RAGE lateral diffusion. RAGE’s affinity for ligand increases 

linearly with the net negative surface charge on the MGO-BSA. Although incubation of 

MGO-BSA with different percent primary amine modification changes the diffusion 
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properties of RAGE, no correlation is measured in the magnitude of the change in the 

diffusion properties with the ligand binding affinity and the net negative surface charge. 

Ligand induced changes are not present when cholesterol is depleted from the cell 

membrane, indicating that cholesterol plays a role in ligand induced changes on RAGE 

lateral diffusion. The work advances our understanding of factors that affect RAGE lateral 

diffusion and signaling and also the connection between RAGE lateral diffusion and 

signaling.  

The effect of a highly conserved membrane proximal cysteine (Cys
1368

) residue on the 

diffusion properties of integrins in Drosophila S2 cells is elucidated using FRAP and SPT. 

Mutating Cys
1368

 to Val
1368

 altered the lateral diffusion properties of this receptor. Both 

FRAP and SPT indicate larger mobile population for the Val
1368

 integrins compared to wild-

type integrins. Tandem mass spectrometry results and protein sequence analysis show that 

Cys
1368 

is a potential palmitoylation or redox post-translational modification site.   

Finally, a method for imaging protein distribution and for probing local environment 

around fluorophore in cells at sub-diffraction spatial resolution is discussed. Stimulated 

emission depletion coupled with fluorescence lifetime microscopy (STED-FLIM) is used to 

image the actin cytoskeleton with 40-nm spatial resolution at ambient conditions. The quality 

of the fluorescence lifetime data is evaluated by time binning the photon data to increase the 

number of photons in the peak channel of the fluorescence decay curve. STED-FLIM can be 

used to image the distribution of protein in the cell membrane or STED-FLIM can be 

coupled with complementary techniques such as fluorescence correlation spectroscopy to 

obtain the diffusion properties of membrane proteins. 
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DISSERTATION OVERVIEW 

This dissertation is organized in 6 chapters and 4 appendixes. A brief introduction to 

diffusion in the cell membrane and the fluorescence techniques that are discussed in the 

subsequent chapters is given in Chapter 1. The work presented in Chapter 2 describes the link 

between RAGE lateral diffusion and actin cytoskeleton dynamics that is probed with 

fluorescence recovery after photobleaching. Chapter 3 describes the ligand induced changes 

in RAGE lateral diffusion measured at the single receptor level using single particle tracking. 

The effects of highly conserved membrane proximal cysteine on the lateral diffusion of 

integrin membrane protein are presented in Chapter 4. The implementation of stimulated 

emission depletion microscopy to perform fluorescence lifetime imaging of Alexa Flour 594 

phalloidin bound to the actin cytoskeleton is presented in Chapter 5. General conclusions and 

possible future directions for the work presented in the previous chapters are summarized in 

Chapter 6. In Appendix A, the role of cholesterol on lateral diffusion of a integrin membrane 

proteins is presented. Finally, photocages that are cleaved with far-UV to far-red wavelength 

light in the cellular environment are presented in Appendix B, C and D. 
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CHAPTER I 

GENERAL INTRODUCTION 

A portion of the text from this chapter is to be incorporated in the review “Chemical Imaging in the Cell 

Membrane” that is in preparation for Annual Review of Analytical Chemistry, 2017 issue  

Aleem Syed and Emily A. Smith 

Cell Membrane and Membrane Protein Diffusion 

Our perception of the cell membrane structure has evolved over time. In the model proposed by Singer 

and Nicolson in 1972, the cell membrane is assumed to be a two dimensional uniform fluid where 

membrane proteins diffuse freely (Brownian diffusion) [1]. However, later experiments to simulate the 

diffusion of membrane proteins in artificial membranes could not describe the motion observed in the 

cell membrane [2-5]. In fact, the observed diffusion coefficients for membrane protein in the cell 

membrane are ten to hundred-fold slower than predicted by Singer and Nicolson's model. In revised 

diffusion models, new types of interactions, such as lipid-lipid, lipid-protein and protein-protein are 

considered that influence the Brownian diffusion of membrane proteins [5-11]. In 2014, Nicholson 

updated his original membrane model by adding the newly discovered interactions that govern 

membrane protein diffusion in the cell membrane [12]. 

 The self-assembly of the lipid bilayer is mainly driven by hydrophobic and van der Waals forces 

that stabilize the cell membrane [13]. The cell membrane consists of about a hundred types of lipids that 

are distributed in the outer and inner leaflet [14, 15]. There is an asymmetry that exists between the 

outer and inner leaflet [16] that leads to formation of membrane domains in the outer leaflet called lipid 

rafts. These lipid rafts provide a signaling platform for many membrane proteins [17, 18]. Also, specific 

lipids such as cholesterol and sphingomyelins are concentrated in these lipid rafts. Cholesterol and other 

lipids recruit specific membrane proteins into these domains for the assembly of signaling complexes by 

adjusting the local thickness of the bilayer [19-21]. These rafts are believed to be dynamic in nature with 
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variable sizes ranging from 10-200 nm, and with typical half-lives in the range of 10-20 ms [5, 22, 23]. 

Lipid rafts limit Brownian diffusion of membrane proteins. 

 Another type of interaction that limits the Brownian diffusion of membrane proteins is protein-

protein interactions in the cell membrane. For example, the well-studied class of membrane proteins, 

integrins, can be triggered to form protein oligomers by interactions with extracellular matrix or ligand 

[24-26]. Integrins are an important family of transmembrane proteins that communicate signals across 

the membrane for survival, growth, proliferation and differentiation of cells [27]. Integrins are 

composed of non-covalently associated α and β subunits. Upon ligand binding there is a conformational 

change in the integrins [28]. This conformational change triggers the formation of a signaling complex 

in the cell membrane. Then the signal is transferred to the intracellular cytoskeleton by membrane 

associated signaling molecules. This protein-protein interaction leads to the formation of large focal 

adhesion complexes in the cell membrane [29, 30]. 

The third added complexity to Singer and Nicholson’s membrane model is the membrane 

associated cytoskeleton. Kusumi et al. have proposed a picket and fence model for the cell membrane, 

where the cytoskeleton forms corrals in the inner leaflet of the cell membrane [5, 19]. Integral 

membrane proteins diffuse freely in domains within these fences. Sometimes the protein escapes out of 

these corrals resulting into a hop-diffusion of membrane proteins. In a study using keratinocytes as a 

model cell membrane, Kusumi et al. have measured the approximate size of these domains. The typical 

size of these domains is about 40- to 300 nm and the residence time for membrane proteins in these 

domains is about 3-30 s [31]. In some cases, membrane proteins are directly or indirectly attached to the 

membrane associated cytoskeleton resulting in a directed motion of membrane protein. 

 Jacobson et al. have classified the motion of membrane proteins into four types. They are i) free 

diffusion with no interactions, ii) constrained diffusion in lipid rafts, iii) hop-diffusion due to 

cytoskeletal fences and iv) directed motion due to interactions with the cytoskeleton [10]. A cell 

membrane with some of the factors that influence the lateral mobility of membrane proteins is depicted 
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in Figure 1.1. As reported by Yeagle, cell membranes are extremely crowded and there may be only few 

molecules of lipids present between integral membrane proteins [32]. Figure 1.1, as with most figures of 

membrane structure, for simplicity does not show the true membrane crowding. 

 

Receptor for Advanced Glycation Endproducts (RAGE) 

RAGE is a transmembrane protein with a large extracellular domain, a single transmembrane and a 

short cytoplasmic tail as depicted in Figure 1.2. It belongs to the immunoglobulin (Ig) super family. The 

extracellular domain of RAGE can be sub-classified as containing a variable (V) and two constant (C1 

and C2) Ig type domains. RAGE is a multi-ligand receptor; several RAGE ligands have been identified 

including advanced glycation endproducts (AGE), S100/Calgranulins family proteins and amyloid beta 

peptides [33-35]. RAGE and RAGE’s ligand are used as a biomarker in several pathological diseases 

such as chronic inflammation, diabetic complications, neuro degenerative disorders and cancer [35-38]. 

Upon engagement with its ligands, RAGE is reported to activate various signaling cascades that are 

used as markers for the activity of RAGE in the pathological conditions [39-42]. Structural analysis of 

extracellular domains of RAGE indicates that RAGE mainly binds to its ligand through electrostatic 

interaction between V and C1 domains [43]. The ligand binding domains of RAGE are mainly 

positively charged as shown in Figure 1.3 [44]. Although ligands for RAGE are structurally diverse, all 

ligands possess large negative binding domains as shown in Figure 1.3 [44]. Although RAGE signaling 

has been studied extensively, knowledge pertaining to the molecular diffusion of RAGE is generally 

unknown. 

 

Fluorescence-Based Imaging Techniques 

Despite the limited spatial resolution, optical techniques are still the primary analysis tool for imaging 

biological samples. Ease of implementation, the minimally invasive nature and selectivity make light-

based techniques unparalleled in routine biological research compared to techniques that are capable of 
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providing atomic spatial resolution (X-ray crystallography, atomic force microscopy, cryo-electron 

microscopy, transmission electron microscopy and scanning electron microscopy) [45, 46]. 

Fluorescence microscopy is one such optical technique where the sample is either labeled with a 

fluorophore molecule or endogenous fluorescence from a specific biological structure is measured. A 

specific wavelength of light is used to excite the fluorophore to the excited electronic state. Then the 

excited fluorophore decays back to the ground electronic state by emitting a photon at a longer 

wavelength that can be detected as a fluorescence signal. A Jablonski diagram for fluorescence is 

depicted in Figure 1.4. The typical residence time for fluorophore in the excited state is between sub-

nanoseconds to few microseconds, this residence time is known as fluorescence lifetime of the 

fluorophore. The average fluorescence lifetime can be calculated by measuring the time it takes to 1/e of 

the excited population to decay back to the ground electronic state. 

 There are mainly three types of fluorescence-based techniques to measure the lateral mobility of 

membrane proteins in the cell membrane. They are i) fluorescence recovery after photobleaching 

(FRAP), ii) single particle tracking (SPT) and iii) fluorescence correlation spectroscopy (FCS). FRAP 

and SPT are discussed in this dissertation to measure the lateral diffusion of receptor for advanced 

glycation endproducts (RAGE) and integrin membrane proteins. 

   

Fluorescence Recovery after Photobleaching (FRAP) 

FRAP can be used to measure the ensemble diffusion properties of membrane proteins. In general, a 

fluorescent protein is genetically fused to the membrane protein of interest. The plasmid containing the 

sequence for protein of interest fused with a fluorescent protein is transfected in the organism or cell. 

The targeted protein is expressed with an endogenous fluorescent tag. A high intensity laser pulse is 

used to bleach a region of few microns width on the cell membrane. Then the fluorescence recovery 

from the bleached spot is recorded over time as shown in Figure 1.5. The fluorescence recovery from 

the unbleached region on the membrane is used to normalize the fluorescence recovery curve. 
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Normalization is essential in order to account for the photobleaching during the recovery period. The 

fluorescence recovery over time is fit to the equation  F(t) =
F0+F∞(

t

τ
)

α

1+(
t

τ
)

α  derived by Feder et al. [47]. 

Where F(t) is the fluorescence recovery over time, F0 is the fluorescence intensity immediately after 

photobleaching, F∞ is the maximum fluorescence recovery, τ is the time for 50% fluorescence recovery 

and α is the time exponent. The mobile fraction can be calculated with the equation 𝑀𝐹 (%) =

 (
𝐹∞−𝐹0

1−𝐹0
) × 100. The diffusion coefficient is calculated from 𝐷 =

𝜔2

4𝜏𝛼𝑡𝛼−1; where ω is the radius of the 

photobleached spot. The time exponent describes the nature of the diffusion. An α value of 1 represents 

Brownian diffusion, whereas α less than 1 represents confined diffusion. Generally a range of α between 

0.9 to 1.1 is assumed to be Brownian. It is worth noting that the estimated diffusion parameters from 

FRAP are the ensemble average of few thousand proteins in the cell membrane. 

 

Single Particle Tracking (SPT) 

On the other hand, SPT experiments measure the diffusion properties of a single membrane protein at a 

time [48, 49]. Since the diffusion of protein in the cell membrane is not synchronized across similar 

membrane proteins, it is essential to measure the protein diffusion one protein at a time in order to 

account for the diffusion heterogeneity. In a SPT experiment, the fluorescence signal is commonly 

generated from a single fluorophore bound to the target protein, hence it is necessary that the 

fluorophore be photostable and bright. As shown in Table 1.1, quantum dots are a good choice as labels 

for SPT experiments for fast acquisition times and long observation times [50]. Several methods can be 

used to conjugate the quantum dots to a ligand or antibody that will specifically bind to the receptor. 

Ligand or antibody can be conjugated by covalent or electrostatic interaction to the quantum dot 

surface; some of the conjugation strategies are shown in Figure 1.6  [51]. In some cases where a specific 

ligand is not available for a membrane protein, then external tags (e.g. His-tag) are introduced in the 
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extracellular domains of target membrane protein. An antibody to the tag or a complexing moiety (e.g. 

Ni-NTA for His-tag) is then coated on to the quantum dot surface. The specific binding of quantum dots 

to the interested protein is a key step in SPT experiments.   

 Once the specific labeling is achieved, tracking of a single membrane protein on the cell 

membrane is performed using fast cameras with high sensitivity. A series of images of quantum dot-

labeled target protein are acquired over time. An ImageJ plugin developed by Sablarzini et al. is used to 

extract the trajectories reported in this dissertation for single membrane protein [52]. The extraction of 

the trajectory begins with localization of the quantum dot in each frame. The localization uncertainty in 

the SPT experiment can be as good as a few nanometers and depends on the signal-to-noise ratio. The 

intrinsic blinking of quantum dots is used to identify single quantum dots from aggregates that do not 

blink. Then the extracted trajectories are further analyzed by the method described by Simons et al. [53]. 

The trajectory is analyzed over a specific timeframe and the probability (ψ) of a protein diffusing by 

Brownian motion in the selected timeframe is given by  𝑙𝑜𝑔(𝜓) = 0.2048 − 2.5117 ×
𝐷𝑡

𝑅2 where D 

(µm
2
/s) is the diffusion coefficient, t (s) is the time and R (µm) is the radius of the given region. The 

computed probability is then converted to a confinement index (L) by a relation 

𝐿 = {
−𝑙𝑜𝑔 (𝜓) − 1 𝜓 ≤ 0.1

0 𝜓 > 0.1
. The confinement index plot along the trajectory is used to identify the 

confined domains in the given trajectory. This method has been implemented in a MATLAB-platform 

as a graphical user interface where extracted trajectories can be input for the analysis [54].   

 In order to assign meaning to the confinement index, simulation of Brownian trajectories must 

be analyzed to establish a threshold. Brownian trajectories are simulated over the range of observed 

experimental diffusion coefficients and time resolution using MATLAB.  The critical confinement value 

(Lc) and critical confinement time (tc) are identified for the simulated trajectories. These critical 

parameters are used to differentiate Brownian and confined diffusion in the experimental data. The 

regions in the experimental trajectory where the confinement index rises above Lc for longer than tc are 



www.manaraa.com

7 

 

 

identified as confined domains. The confined domains are further analyzed for domain size and the 

duration of confinement. Additionally, for each trajectory, a global diffusion coefficient is also 

calculated. 

 

Stimulated Emission Depletion Fluorescence Lifetime Imaging (STED-FLIM) 

The major drawback of light-based microscopy is the diffraction limit stemming from the wave nature 

of the light. The light generated from a point-like object cannot be imaged as a point, rather it forms a 

three dimensional intensity distribution called a point spread function (PSF). A schematic of PSF is 

shown in Figure 1.7. If two objects are closer than the diffraction limit of the optical system, they cannot 

be resolved as described by Ernst Abbe. The diffraction limit in the lateral dimensions (or the full-width 

at half-maximum (FWHM) of the PSF) for an optical system can be approximated by ≈ 0.61𝜆/𝑁𝐴, 

where λ is the wavelength of the light and NA is the numerical aperture of the focusing objective. The 

diffraction limit is 2-3 times larger in the axial dimension [55].  For example, 550-nm wavelength light 

and optics with a NA of 1.40 result in a PSF with a lateral FWHM of about 200 nm and 500 nm in the 

axial direction. In recent years, various far-field techniques have been developed to surpass the 

diffraction limit in fluorescence microscopy. A few examples are stimulated emission depletion (STED) 

microscopy, stochastic optical reconstruction microscopy, photoactivable and localization microscopy 

and structured illumination microscopy [56-59]. The potential of these techniques has been appreciated 

with the Nobel Prize in chemistry for the year 2014 awarded to Eric Betzig, Stefan W. Hell and William 

E. Moerner for the development of “super-resolved fluorescence microscopy”. 

 STED-based fluorescence microscopy is described in this dissertation for imaging the actin 

cytoskeleton in the fixed cells. The Jablonski diagram representing relevant STED transitions is given in 

Figure 1.8. In STED experiment, an excitation pulse is used for exciting a molecule to an electronic 

excited state from the ground state. Immediately, a depletion pulse shaped in a donut (with zero 

intensity in the center) is used to deactivate the fluorophore from the lowest vibrational state of the 
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electronic excited state to some higher vibrational state of the ground electronic state. The wavelength 

of the depletion beam is a critical parameter in order to avoid re-excitation of the fluorophore with the 

depletion beam. Since the shape of the depletion beam is a donut with a zero intensity center, molecules 

at the center of the donut have an opportunity to spontaneously fluoresce, resulting in a narrow effective 

PSF. The diffraction limit relevant for STED is given by ≈ 𝜆/(2𝑁𝐴 × (1 +
𝐼𝑚

𝐼𝑠
)

1

2
), where Im is the 

intensity of the depletion beam and Is is the saturation intensity (and the other symbols are defined 

above) [60]. The size of the null at the donut center can be tuned with the intensity of the depletion 

beam [60]. In theory, molecular-level spatial resolution can be achieved with an intense depletion beam 

and an extremely photostable fluorophore. For example, the nitrogen vacancy center in diamond are 

imaged with a spatial resolution of 10 nanometers using STED [61]. As shown in Figure 1.9, sub-

diffraction spatial resolution in STED provides a means to probe the heterogeneity present in domains 

smaller than the diffraction limit, which are otherwise impossible to probe in dense systems using 

traditional fluorescence microscopy. 

 The home-built STED apparatus used to generate data presented in this dissertation is shown in 

Figure 1.10. The complete description of this setup is given by Lesoine et al. [62]. Briefly, a super-

continuum laser is split into an excitation beam and a depletion beam using a polarizing beam splitter.  

An optical delay is used in the depletion beam path to offset the depletion beam arrival on to the sample 

by ~100 ps. The donut profile of the depletion beam is generated using a vortex phase plate. Half-wave 

plates and quarter-wave plates are used in the beam paths as required to adjust the polarization of the 

excitation and depletion beams. Spatially expanded depletion and excitation beams are recombined 

using a dichroic mirror and directed to the sample through a microscope immersion oil objective with a 

second dichroic mirror. The fluorescence signal is collected by the same objective and guided to a 

photo-multiplier tube (PMT) detector. To construct a sub-diffraction image the sample is raster scanned 

over the excitation and depletion beams. The PMT detector is connected to single-photon counter card 
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that can record the photon arrival times at each pixel. The photon distribution over time can be fit to an 

exponential decay to extract the fluorescence lifetime of the fluorophore. In addition to intensity images, 

fluorescence lifetime images can be obtained at sub-diffraction spatial resolution. The fluorescence 

lifetime is sensitive to changes in the local environment and the structure of the proteins that is labeled 

with a fluorescent probe. Hence STED coupled with fluorescence lifetime imaging can be used to probe 

the spatial heterogeneity at sub-diffraction resolution. 
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Figures andTables 

 

 Figure 1.1. Organization of the cell membrane and associated components. 

 

 
Figure 1.2. Domain structure of receptor for advanced glycation endproducts (RAGE) in the cell 

membrane.  V, C1 and C2 are the extracellular domains of RAGE. TM: transmembrane 
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Figure 1.3. Charge density map of the extracellular domain of RAGE and RAGE ligands. The figure is 

reproduced from reference [41]. 

 

 

 

 
Figure 1.4. Fluorescence Jablonski diagram. 
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Figure 1.5. Selected images of a cell (right panel) during a FRAP experiment at A) prebleach, B) bleach 

and C) postbleach events. Scale bar is 5µm. The resulting fluorescence recovery curve for the 

fluorescence intensity measured from the bleached region (red circle) is shown in the left panel.  
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Figure 1.6. Methods for QD-antibody or ligand bioconjugation. (A) The disulphide bonds in antibody 

are reduced for conjugation with QDs through sulfhydryl-amine coupling, (B) carboxylic acid (-

COOH)-coated QDs are covalently attached to primary amine (-NH2) groups on intact antibody using 

EDC as a catalyst, (C) covalent site-directed conjugation of antibody to hydrazide-modified QDs, (D) 

histidine-tagged ligands are conjugated to Ni-NTA modified QDs, (E) biotinylated antibody is non-

covalently conjugated to streptavidin-coated QDs. The figure is reproduced from reference [48].  
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Figure 1.7. Light is focused into a three dimensional point spread function (PSF) through an objective 

lens on to the sample. The lateral and axial full-width at half-maximums of the PSF are represented with 

dxy and dz, respectively. 

 

 

Figure 1.8. Electronic transitions in a typical STED measurement. 



www.manaraa.com

18 

 

 

 

Figure 1.9. Illumination profiles in A) in diffraction limited confocal microscopy, and B) in STED 

imaging. Fluorophore molecules are not drawn to scale.  
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Figure 1.10. Schematic of a home-built stimulated emission depletion microscope. The figure is 

reproduced from reference [59].
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Table 1.1. Comparison of different fluorescent labels (the table is adapted and modified from reference 

[47]). 
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CHAPTER 2 

LATERAL DIFFUSION AND SIGNALING OF RECEPTOR FOR ADVANCED GLYCATION 

ENDPRODUCTS (RAGE): A RECEPTOR INVOLVED IN CHRONIC INFLAMMATION 

A paper submitted for publication as a research article 

Aleem Syed, Qiaochu Zhu and Emily A. Smith 

 

2.1. Abstract 

Membrane diffusion is one of the key mechanisms in the cellular function of receptor proteins. Receptor 

for advanced glycation end-products (RAGE) signaling has been extensively studied in the context of 

several pathological conditions, however, very little is known about RAGE diffusion. To fill this gap, 

RAGE lateral diffusion is probed in native, cholesterol depleted and cytoskeleton altered cellular 

conditions as well as in the presence of RAGE ligand. In native GM07373 cellular conditions, RAGE 

mainly follows Brownian diffusion with a large (90%) mobile fraction and an average diffusion 

coefficient of 0.3±0.2 μm
2
/s. Alteration of the actin cytoskeleton dynamics with the small molecules 

cytochalasin-D (CD) or Jasplakinolide lowered the RAGE mobile fraction by 10% without affecting the 

RAGE diffusion coefficient or mode of diffusion. There is also a 50% decrease in phosphorylation of 

extracellular signal-regulated kinase (p-ERK) when the actin cytoskeleton is disrupted by CD in RAGE 

expressing GM07373 cells. Disrupting the actin cytoskeleton in GM07373 cells that do not express 

detectable amounts of RAGE results in no change in p-ERK.  This suggests there is a connection 

between RAGE diffusion, RAGE-dependent signaling, and a dynamic actin cytoskeleton. In contrast, 

there is no statistically significant change in the RAGE mobile fraction, diffusion coefficient or 

signaling measured with cholesterol depletion from the cells or in the presence of a RAGE ligand. This 

work serves to further our understanding of the factors influencing RAGE lateral diffusion and the 

connection between RAGE mobility and signaling. 
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2.2. Introduction 

Lateral diffusion of membrane proteins is often interrelated with their cellular signaling and functions in 

the cell membrane [1-3]. The receptor for advanced glycation endproducts (RAGE) is a transmembrane 

protein that belongs to the immunoglobulin (Ig) superfamily. Many RAGE ligands have been identified, 

including advanced glycation endproducts (AGEs), S100 proteins, high mobility group box 1 

(HMGB1), and amyloid-β fibrils [4-8]. RAGE and its signaling are associated with many disease states, 

including cancer, retinal disease, cardiovascular disease, Alzheimer’s disease, respiratory disorders, 

chronic inflammation and diabetic complications [9-15]. RAGE is reported to activate various signaling 

cascades, including mitogen-activated protein kinases (MAPKs), Rac/Cdc42 and Janus kinases 

(JAK)/signal transducers and activator of transcriptions (STATs) and NF-κB [16-21]. Through these 

signaling pathways, RAGE influences cell survival, motility and the inflammatory response. Even 

though RAGE signaling has been studied extensively in different disease states, very little is reported 

regarding RAGE diffusion in the cell membrane. The goal of the current study is to investigate the 

lateral diffusion and cellular signaling of RAGE in the endothelial cell membrane and to study the 

effects of external stimuli such as cholesterol depletion and alterations to the actin cytoskeleton on 

diffusion. 

Cholesterol and the actin cytoskeleton play an important role in the organization of the cell 

membrane. Functional domains in the cell membrane, known as lipid rafts or lipid nanodomains, 

contain about 3 to 5-fold excess cholesterol compared to neighboring regions of bilayer [22-25]. These 

functional domains act as platforms for localization and signaling of many membrane proteins. Altering 

membrane cholesterol levels has been reported to affect the organization and signaling of a number of 

receptors [22, 26-30]. The actin cytoskeleton serves as a structural element that can affect the 

functionality of membrane proteins, including their oligomerization and transmembrane signal transfer 

[31].  
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Both cholesterol and the actin cytoskeleton have been reported to play a key role in RAGE 

functions. For example Reddy et al. showed cholesterol depletion inhibited the S100-induced effects 

involving RAGE in vascular smooth muscle cells and that intact caveolae are necessary for RAGE 

signaling [32]. RAGE has also been reported to be part of functional cholesterol-enriched domains in 

neural endothelial cells [33, 34]. Xiong et al. showed that the actin cytoskeleton played a pivotal role in 

RAGE-mediated plasma membrane plasticity in a human umbilical vein endothelial cell line [35]. They 

found that RAGE overexpression reorganizes filamentous actin (F-actin) by increasing β-catenin levels, 

resulting in inhibition of membrane sealing. Although it is evident that cholesterol and the actin 

cytoskeleton affect some RAGE functions, possible roles in affecting RAGE lateral diffusion remain 

unknown.  

In this study, we have genetically fused monomeric red fluorescent protein (mRFP) to the C-

terminal of RAGE and measured its lateral diffusion using fluorescence recovery after photobleaching 

(FRAP) in endothelial cells. In FRAP, a small area on the cell membrane is photobleached with a tightly 

focused laser beam and the fluorescence recovery from diffusion of neighboring fluorescent molecules 

into the photobleached spot is recorded over time. Several models have been constructed to extract 

diffusion parameters such as the immobile population, diffusion coefficient and time-dependency of the 

diffusion [36, 37]. RAGE diffusion at native, cholesterol depleted and altered actin cytoskeleton 

conditions as well as in the presence of a reported RAGE ligand have been studied. Methyl-β-

cyclodextrin (MβCD) was used to deplete cholesterol from the endothelial cells. The actin cytoskeleton 

was altered using cytoskeletal drugs cytochalasin-D (CD) and Jasplakinolide (Jsp). Finally, cellular 

signaling was measured by quantifying the phosphorylation in extracellular-signal-regulated kinase (p-

ERK) in endothelial cells at native and altered cellular conditions.  
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2.3. Materials Methods 

Cell culture  

All experiments were performed using bovine artery GM07373 endothelial cells (Coriell Institute 

Biorepositories, Camden, NJ). GM07373 cells were grown in complete growth medium consisting of 

Dulbecco’s modified eagle medium (DMEM) (Sigma-Aldrich, St. Louis, MO), 10% fetal bovine serum 

(FBS) (Irvine Scientific, Santa Ana, CA) and 12.5 mM Streptomycin and 36.5 mM Penicillin (Fisher 

Scientific, Pittsburgh, PA) in a water-jacketed CO2 incubator (Thermo Scientific, Waltham, MA).  Cells 

were sub-cultured using 0.25% (w/v) trypsin-EDTA (Life Technology, Carlsbad, CA) solution every 

two days.  All transfected GM07373 cells were established to express respective recombinant proteins 

stably before any microscopy or molecular biology experiments were performed. Plasmid and 

transfection details are in the supplementary information. 

 

Western blotting  

GM07373 cells expressing RAGE (GM07373-RAGE) or RAGE-mRFP (GM07373-RAGE-mRFP) 

were cultured to 100% confluence and rinsed with ice cold phosphate buffered saline (PBS). Cells were 

lysed with RIPA buffer (150 mM sodium chloride, 1.0% NP-40 detergent, 0.5% sodium deoxycholate, 

0.1% SDS, 50 mM Tris, pH 8.0) with Halt
TM

 protease inhibitor cocktail (1×, Thermo Scientific, 

Rockford, IL). After the initial lysis treatment, cells were passed through a 21 gauge needle to ensure 

complete cell lysis. The protein mixture was first separated on the NuPAGE
®
 Novex

®
 4-12% Bis-Tris 

protein gel (Life Technology, Eugene, OR) and then electro blotted onto Immun-Blot
®
 LF PVDF 

membrane (Bio-Rad, Hercules, CA) as described previously [38, 39]. The PVDF membrane was probed 

following the manufacturer’s protocol (Bio-Rad). Antibodies used for probing were: anti-RAGE rabbit 

(H-300, Santa Cruz Biotechnology), anti-RFP rabbit (Life Technology), anti-Vinculin goat (sc-7649, 

Santa Cruz Biotechnology), anti-Actin rabbit (sc-1616-R, Santa Cruz Biotechnology), anti-p-ERK 

rabbit (Tyr 204, sc-101761, Santa Cruz Biotechnology). Fluorescence from the labeled secondary 
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antibody was measured on a Typhoon FLA 9500 variable mode laser scanner (GE Healthcare, 

Waukesha, WI). The vinculin protein band was used as a loading control in all Western blot 

experiments. Protein sequences were analyzed by mass spectrometry as reported in the supplemental 

information. 

  

FRAP sample preparation 

Sterile glass bottom culture dishes were made by attaching a cover glass (22mm × 22mm, No. 1.5, 

Corning Inc., Corning, NY) to the bottom of a polystyrene petri dish (35mm × 10mm, Fisher Scientific) 

containing a pre-drilled 3/4 inch diameter hole as described previously [40]. GM07373-RAGE or 

GM07373-RAGE-mRFP cells were sub-cultured onto the culture dishes two days before the 

experiment.  Cells were either used without further treatment or treated with MβCD (Sigma-Aldrich, 

5mM, in serum free DMEM for 30 minutes) to deplete the cholesterol or with CD (Sigma-Aldrich, 10 

µM, in serum free DMEM for 60 minutes) or with Jsp (Santa Cruz Biotechnology, 3µM, in serum free 

DMEM for 30 minutes) to alter the actin cytoskeleton before the FRAP experiments [29, 41, 42]. For 

measurements of the diffusion of a lipid mimic, GM07373 and GM07373-RAGE cells were stained 

with lipophilic dye DiI (Invitrogen, Eugene, OR, 1mM, in serum free DMEM for 30 minutes) before the 

FRAP experiments.   

 

FRAP microscopy 

All FRAP experiments were performed on a Nikon Eclipse TE2000U inverted microscope (Nikon, 

Melville, NY) which was equipped with an oil-immersion objective (100×, Apo TIRF, 1.49 numerical 

aperture). The microscope was housed in a home built 0.9×0.6×0.5 m
3
 Plexiglas box containing a heat 

source to maintain a 36 ± 2 ºC temperature at the sample throughout the experiment. Fluorescence was 

excited with a mercury lamp (X-cite 120 PC, EXFO Photonic Solutions Inc., Mississauga, Ontario, 

Canada) operating at 25% of the power and an excitation filter (HQ545/30x, Chroma Technology Corp., 
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Bellows Falls, VT). The resulting fluorescence emission was collected through an emission filter 

(HQ620/60x, Chroma Technology Corp.). For photobleaching a region of the cell membrane, a 488-nm 

laser was directed to the sample with a dichroic mirror (Q495lp, Chroma Technology Corp.). The laser 

power and photobleaching spot diameter at the sample were 10 mW and 4.8 µm, respectively. A 

LabView program (National Instruments, Austin, TX) was developed to control a shutter (Thorlabs, 

Jessup, MD) in the laser path. The photobleaching time was 2 msec. Fluorescence images were recorded 

using a PhotonMAX 512B EMCCD camera (Princeton Instruments, Trenton, NJ) and Winview 

(Photometric, Tucson, AZ) image acquisition software. Ten pre-photobleach and 100 post-photobleach 

images were collected with a time resolution of 410 ms per image. Data collection was completed 

within 1 h after adding imaging medium (pH=7.2, 155 mM NaCl, 5 mM KCl, 2 mM CaCl2, 1 mM 

MgCl2, 2 mM NaH2PO4, 10 mM HEPES and 10 mM Glucose) to the cells.  

 

FRAP data analysis 

The fluorescence images collected pre-photobleach and post-photobleach were analyzed with ImageJ 

(version 1.48, National Institutes of Health) software. The fluorescence intensity from three regions of 

interest (ROIs) was extracted for each image in the series of 110 images. The ROIs were classified as 

the photobleached region (an area on the plasma membrane illuminated by the laser spot), the non-

photobleached region (an area on the plasma membrane away from the photobleached region), and the 

background (an area where there was no cell present in the field of view). Fluorescence recovery curves 

were constructed with a three-step process: (i) the background intensity was subtracted from 

fluorescence intensities in the photobleached ROI, the resulting curves were normalized with the 

fluorescence intensities from (ii) the non-photobleached ROI and (iii) the average pre-photobleached 

intensity from the subsequently photobleached region to account for the lamp intensity fluctuations as 

well as photobleaching during the image acquisition period as described by Phair et al. [43]. 
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Fluorescence recovery curves were analyzed and the results were averaged over 9 to 13 cells for each 

data set. Mobile fractions (MF) were calculated using equation 1. 

            𝑀𝐹 =
𝐹∞−𝐹0

𝐹0−𝐹0
× 100  (1) 

Where F0 is the intensity immediately after photobleaching, F
0
 is the pre-photobleaching intensity and 

F∞ is the final intensity (i.e., in image 110), where all fluorescence intensities refer to the values from 

the fluorescence recovery curves. Each fluorescence recovery curve was further fit to equation 2 using 

IGOR Pro V 6.32A (WaveMetrics Inc., Lake Oswego, OR) to measure the time dependency of the 

fluorescence recovery as well as diffusion coefficients [36]. 

             𝐹(𝑡) =
𝐹0+𝐹∞(

𝑡

𝜏
)

𝛼

1+(
𝑡

𝜏
)

𝛼               (2) 

Where F(t) is the fluorescence intensity at time t, α is the time exponent and τ is time for 50% 

fluorescence recovery. Diffusion coefficients were calculated using equation 3.  

            𝐷(𝑡) =
𝜔2

4𝜏𝛼𝑡(𝛼−1)
   (3) 

Where D(t) is the diffusion coefficient at time t and ω is the radius of the photobleaching spot. The 

statistical significance of all reported data sets was measured using the student’s-t test. 

 

Actin cytoskeleton staining 

Cells were sub-cultured onto glass-bottom petri dishes and allowed to spread in the incubator for two 

days before the experiment. Cells were treated as described above with 5 mM MβCD, 10 µM CD, or 3 

µM Jsp before the actin cytoskeleton was stained for fluorescence imaging. The staining protocol was 

described previously [44]. Briefly, cells were fixed with 4% (w/v) paraformaldehyde in PBS for 10 

minutes. Triton X-100 (0.1% (v/v) in PBS) was used for cell membrane permeabiliztion. Blocking was 

performed using bovine serum albumin (1% (w/v) in PBS) for 5 minutes. Cells were further incubated 
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with Atto 647N conjugated phalloidin (Sigma-Aldrich) to stain the F-actin overnight at 4 °C. Stained 

cells were rinsed with imaging medium before imaging using the Nikon Eclipse TE2000U inverted 

microscope described above. The actin cytoskeleton was further quantified to measure the alignment in 

the actin fibers. Anisotropy was calculated using an ImageJ plugin, FibrilTool, as described previously 

[45]. Calculated anisotropy values were in the range from 1 to 0, a value of 1 represents perfect 

alignment in the fibers and value of 0 represents no (i.e., random) alignment in the fibers. 

 

Bovine serum albumin (BSA)-AGE preparation and quantification 

BSA-AGE was made by incubating 50 mg/mL BSA (Sigma-Aldrich) and 100 mM methylglyoxal 

(Sigma-Aldrich) in PBS at 37 ºC for 5 days. Glycation of amine functional groups on amino acid 

residues in BSA with methylglyoxal was quantified by measuring the free amine content using ortho-

phthaldialdehyde assay as previously described [46].  

 

2.4. Results and Discussion 

Characterization of RAGE and RAGE fused to mRFP (RAGE-mRFP) expression  

The primary goal of this study is to probe the lateral diffusion of RAGE in the GM07373 cell membrane 

to characterize the role of the actin cytoskeletal and membrane organization in altering RAGE diffusion. 

To achieve this goal, plasmids were transfected into GM07373 cells to stably express full-length RAGE 

or RAGE-mRFP. RAGE or RAGE-mRFP expression was confirmed by Western blot analysis of cell 

lysates as shown in Figure 2.1. A protein band corresponding to RAGE at ~55 kDa was observed in the 

GM07373-RAGE cell lysate (lane B, Figure 2.1) but not in the GM07373 cell lysate (lane A, Figure 

2.1). Surprisingly, the GM07373-RAGE-mRFP cell lysate (lane C, Figure 2.1) showed three bands in 

the 60 to 80 kDa molecular weight range after probing the membrane with the RAGE primary antibody. 

The RAGE-mRFP protein is expected to show a single band at ̴ 80 kDa. Mass spectrometry analysis was 

positive for RAGE peptides for bands 1 to 4. One possible explanation for the observed multiple bands 
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in lane C may be the result of proteolytic cleavage of the fused fluorescent protein during translation, 

maturation or analysis. Similar findings were reported previously for another red fluorescent protein 

variant which showed molecular weights corresponding to an intact and two fragmented sequences [47].  

 In order to identify the reason for three RAGE-positive bands in the Western blot of the 

GM07373-RAGE-mRFP cell lysate, which may influence the fluorescence measurements, the PVDF 

membrane was probed with a polyclonal antibody to mRFP. Only a single band was observed (band 5, 

Figure 2.1) near the molecular weight of band 4. The lack of a band near the molecular weight of band 2 

or 3 when the membrane is probed with the mRFP antibody suggests these bands lack the binding 

epitopes and do not contain the full mRFP sequence. It was confirmed by fluorescence imaging of the 

PVDF membrane that these bands do not produce a fluorescent species, and do not contribute to the 

fluorescence microscopy results reported below.  

 Phosphorylation in extracellular-signal-regulated kinase (p-ERK) is used as a marker for 

downstream RAGE signaling [48, 49]. There was a low but detectable p-ERK expression in GM07373 

cells, and a two-fold increase with RAGE expression in GM07373 cells (Figure 2.2).  RAGE-mRFP 

expression generates the same level of p-ERK expression as RAGE lacking the fluorescent protein 

fusion (Figure S2.1). This demonstrates that the exogenous expression of RAGE or RAGE-mRFP does 

generate ERK signaling in GM07373 cells.   

 

RAGE-mRFP exhibits Brownian diffusion in the native GM07373 cell membrane with a high mobile 

fraction 

FRAP experiments on GM07373 cells expressing RAGE-mRFP were performed and the average 

recovery curve from 10 cells is shown in supporting information (Figure S2.2). Each replicate curve was 

individually fit to the time-dependent diffusion model with an immobile fraction (i.e., all parameters α, 

F0, F∞ and τ in equation 2 were allowed to vary) as described by Feder et al. [36]. The time exponent (α) 

from the fit parameters provides information on the nature of the mode of diffusion. An α value that 
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equals 1 indicates time-independent Brownian diffusion, whereas a value less than 1 indicates time-

dependent diffusion. The average α value measured for RAGE-mRFP is 1.0 ± 0.2 indicating that RAGE 

exhibits Brownian diffusion in the GM07373 cell membrane (Table 2.1). The average mobile fraction 

was 90% and the average diffusion coefficient was 0.3±0.2 µm
2
/s for RAGE-mRFP at native cellular 

conditions. Similar to the RAGE diffusion properties reported here, other membrane proteins such as 

histocompatibility complex class II, Acetylcholine receptor, and vesicle-associated membrane protein 

have also been found to exhibit Brownian diffusion with a large mobile fraction [50-54].  While the 

average diffusion of RAGE-mRFP is Brownian, it may be possible that there are rare populations of 

RAGE-mRFP with confined diffusion characteristics that are not detectable with the ensemble FRAP 

method.     

 

Alterations to the F-actin cytoskeleton decrease the RAGE-mRFP mobile fraction but cholesterol 

depletion and ligand incubation have a minimal effect on the RAGE-mRFP diffusion properties 

measured by FRAP 

To study the possible effect of the actin cytoskeleton on RAGE lateral diffusion, the actin cytoskeleton 

was altered with two drugs, CD and Jsp. CD depolymerizes the filamentous actin cytoskeleton and 

prevents re-polymerization by tightly binding to actin monomers [55]. Jsp tightly binds with filamentous 

actin and inhibits de-polymerization [56].  Atto 647N conjugated phalloidin was used to measure the 

effect of CD and Jsp on the actin cytoskeleton in GM07373-RAGE cells as shown in Figure 2.3. In the 

native GM07373 cells, the actin cytoskeleton staining generated partially aligned fibers with a well-

defined cell boundary as shown in Figure 2.3a. After the CD treatment, the actin structure was 

significantly altered and no clear cell boundary was observed (Figure 2.3c). Jsp binds to the actin 

cytoskeleton in competition with the Atto 647N conjugated phalloidin [57]. Hence, actin cytoskeleton 

staining was diminished with Atto647N conjugated phalloidin staining for Jsp treated cells (Fig. 2.3d), 
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which suggests that the Jsp treatment was successful. There was no change in the actin expression as 

measured from Western blot analysis of the cell lysate treated with CD or Jsp (Figure 2.4 and S2.3).  

 RAGE-mRFP diffusion parameters were measured for CD or Jsp treated cells. The RAGE-

mRFP mobile fraction was decreased by 10% when the actin cytoskeleton was altered with either CD or 

Jsp (Table 2.1). However, the diffusion coefficient and mode of diffusion were not significantly 

different when the actin cytoskeleton was altered with CD or Jsp. Even though the mechanism of 

altering the actin polymerization is different for CD and Jsp treatments, similar effects were observed on 

the diffusion behavior of RAGE-mRFP in the cell membrane with both treatments. This suggests that a 

dynamic actin structure is necessary for increasing the mobile fraction of RAGE. No change to the lipid 

mobile fraction probed with the DiI lipid mimetic was measured after CD or Jsp treatment (Table 2.2), 

indicating the decreased RAGE mobile fraction after these treatments is not the result of a more mobile 

lipid fraction. Similarly, there is a statistically significant 38% and 50% decrease in the lipid diffusion 

coefficient after CD and Jsp treatment (Table 2.2 and Figure S2.4), respectively, while there is no 

change to the RAGE diffusion coefficient measured after these treatments. 

 To understand if the decreased RAGE mobile fraction associated with CD and Jsp treatments is 

also associated with altered RAGE downstream signaling, phosphorylation in ERK (p-ERK) is 

measured in both GM07373 and GM07373-RAGE cells.  p-ERK was decreased by 52% when the actin 

cytoskeleton was disrupted with CD in GM07373-RAGE cells (Figure 2.5). There was no statistically 

significant change in p-ERK observed in GM07373-RAGE cells with Jsp treatment or in GM07373 

cells lacking detectable RAGE expression after CD or Jsp treatment (Figure S2.5). These observations 

indicate that actin disruption with CD plays a role in RAGE mobility and this correlates with reduced 

RAGE downstream signaling. It appears inconsistent that Jsp decreases the RAGE mobile fraction 

similar to CD, but Jsp does not alter downstream RAGE signaling measured by p-ERK. It is possible, 

however, that there are distinct mechanisms by which the RAGE mobile fraction is decreased with CD 
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and Jsp treatments, and the actin depolymerization associated with CD treatment is necessary for 

reduced p-ERK levels since Jsp treatment prevents depolymerization.  

To investigate the effect of cholesterol on the lateral diffusion of RAGE-mRFP, cholesterol was 

depleted using MβCD. The total free cholesterol was depleted by 45% and no statistically significant 

change in the endogenous cholesterol ester was observed when cells were incubated with 5 mM MβCD 

as measured by Amplex
®
 Red cholesterol quantification assay (Figure 2.6). There was a 38% decrease 

in the lipid diffusion coefficient with cholesterol depletion (Table 2.2 and Figure S2.4), however, the 

diffusion parameters remained unchanged for RAGE-mRFP (Table 2.1). There is also no change in p-

ERK measured after cholesterol depletion from the GM07373 or GM07373-RAGE cells (Figure 2.6 and 

S2.6). Although no change in the actin expression was observed with cholesterol depletion, 

interestingly, a significant 40% decrease in the actin fiber alignment (anisotropy) with cholesterol 

depletion was observed in the GM07373 and GM07373-RAGE cell lines as shown in Figure 2.3b and 

Table 2.3. These observations indicate that cholesterol depletion affects the actin cytoskeleton 

organization. It has been previously reported that a change in membrane cholesterol not only affects the 

cell membrane structure but also has a global effect, including reorganization of the actin structure [58]. 

The cholesterol-depletion-induced changes to the actin cytoskeleton organization are not associated with 

changes in RAGE diffusion.  

Finally, a possible role for ligand binding in altering RAGE diffusion was measured. A ligand 

for RAGE is termed the advanced glycation endproducts (AGE), which can be synthetically produced 

by bovine serum albumin (BSA) incubation with methylglyoxal (BSA-AGE). p-ERK increased by 38% 

and 25% after 5 mg/mL BSA-AGE incubation with GM07373 and GM07373-RAGE cells, respectively 

(Figure 2.2). While the increase in p-ERK in GM07373 cells after BSA-AGE incubation may be the 

result of low levels of endogenous RAGE that were not detected by Western blot (lane A, Figure 2.1), it 

is likely that other signaling pathways that do not involve RAGE are the primary reason for increased p-

ERK in this case. AGE ligands are reported to interact with other cell surface receptors besides RAGE 
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[59]. Consistent with the lack of a definitive RAGE-induced increase in p-ERK signaling after BSA-

AGE incubation, there is also no change in the RAGE diffusion properties after incubation with the 

BSA-AGE ligand (data not shown). Given the chemical and biological complexity of RAGE ligands, 

further work to elucidate possible effects of ligand binding on RAGE diffusion is warranted. 

 

2.5. Conclusions 

RAGE-mRFP diffuses freely in the cell membrane with a large mobile fraction at native GM07373 

cellular conditions. The polymerization and depolymerization dynamics of the actin cytoskeleton play a 

role in increasing the RAGE mobile fraction, although only the depolymerizing CD treatment showed a 

RAGE-dependent change in p-ERK signaling. Even though there is a significant change in the actin 

cytoskeleton structure, cholesterol depletion has no effect on RAGE lateral diffusion measured by 

FRAP or signaling measured by p-ERK. Preliminary data support the notion that ligand binding also has 

no effect on the ensemble RAGE diffusion parameters measured by FRAP. The combined data point to 

an important role for actin dynamics in the diffusing population of RAGE. 

 

Acknowledgements 

This work was supported by the National Science Foundation (CHE-1412084). The authors thank Joel 

Nott of the protein facility at Iowa State University for help with mass spectrometry, and Dipak Mainali 

and Chamari Wijesoorya for their assistance with cell culture. 



www.manaraa.com

34 

 

 

2.6. References 

[1] D. Axelrod, Lateral motion of membrane proteins and biological function, J. Membr. Biol., 75 

(1983) 1-10. 

[2] P. Ronchi, S. Colombo, M. Francolini, N. Borgese, Transmembrane domain-dependent partitioning 

of membrane proteins within the endoplasmic reticulum, J. Cell Biol., 181 (2008) 105-118. 

[3] S. Ganguly, T.J. Pucadyil, A. Chattopadhyay, Actin cytoskeleton-dependent dynamics of the human 

serotonin1A receptor correlates with receptor signaling, Biophys. J., 95 (2008) 451-463. 

[4] A. Taguchi, D.C. Blood, G. del Toro, A. Canet, D.C. Lee, W. Qu, N. Tanji, Y. Lu, E. Lalla, C. Fu, 

M.A. Hofmann, T. Kislinger, M. Ingram, A. Lu, H. Tanaka, O. Hori, S. Ogawa, D.M. Stern, A.M. 

Schmidt, Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases, Nature, 

405 (2000) 354-360. 

[5] A.M. Schmidt, M. Vianna, M. Gerlach, J. Brett, J. Ryan, J. Kao, C. Esposito, H. Hegarty, W. 

Hurley, M. Clauss, et al., Isolation and characterization of two binding proteins for advanced 

glycosylation end products from bovine lung which are present on the endothelial cell surface, J. Biol. 

Chem., 267 (1992) 14987-14997. 

[6] E. Leclerc, G. Fritz, S.W. Vetter, C.W. Heizmann, Binding of S100 proteins to RAGE: an update, 

Biochim. Biophys. Acta, 1793 (2009) 993-1007. 

[7] S.D. Yan, X. Chen, J. Fu, M. Chen, H. Zhu, A. Roher, T. Slattery, L. Zhao, M. Nagashima, J. 

Morser, A. Migheli, P. Nawroth, D. Stern, A.M. Schmidt, RAGE and amyloid-beta peptide 

neurotoxicity in Alzheimer's disease, Nature, 382 (1996) 685-691. 

[8] M. Koch, S. Chitayat, B.M. Dattilo, A. Schiefner, J. Diez, W.J. Chazin, G. Fritz, Structural basis for 

ligand recognition and activation of RAGE, Structure, 18 (2010) 1342-1352. 

[9] C.D. Logsdon, M.K. Fuentes, E.H. Huang, T. Arumugam, RAGE and RAGE ligands in cancer, 

Curr. Mol. Med., 7 (2007) 777-789. 

[10] G.R. Barile, A.M. Schmidt, RAGE and its ligands in retinal disease, Curr. Mol. Med., 7 (2007) 

758-765. 

[11] G. Basta, Receptor for advanced glycation endproducts and atherosclerosis: From basic 

mechanisms to clinical implications, Atherosclerosis, 196 (2008) 9-21. 

[12] S.D. Yan, A. Bierhaus, P.P. Nawroth, D.M. Stern, RAGE and Alzheimer's disease: a progression 

factor for amyloid-beta-induced cellular perturbation?, J. Alzheimers Dis., 16 (2009) 833-843. 

[13] R. Briot, J.A. Frank, T. Uchida, J.W. Lee, C.S. Calfee, M.A. Matthay, Elevated levels of the 

receptor for advanced glycation end products, a marker of alveolar epithelial type I cell injury, predict 

impaired alveolar fluid clearance in isolated perfused human lungs, Chest, 135 (2009) 269-275. 

[14] M.A. Hofmann, S. Drury, C. Fu, W. Qu, A. Taguchi, Y. Lu, C. Avila, N. Kambham, A. Bierhaus, 

P. Nawroth, M.F. Neurath, T. Slattery, D. Beach, J. McClary, M. Nagashima, J. Morser, D. Stern, A.M. 

Schmidt, RAGE mediates a novel proinflammatory axis: a central cell surface receptor for 

S100/calgranulin polypeptides, Cell, 97 (1999) 889-901. 

[15] A. Bierhaus, P.P. Nawroth, Multiple levels of regulation determine the role of the receptor for AGE 

(RAGE) as common soil in inflammation, immune responses and diabetes mellitus and its 

complications, Diabetologia, 52 (2009) 2251-2263. 

[16] H.M. Lander, J.M. Tauras, J.S. Ogiste, O. Hori, R.A. Moss, A.M. Schmidt, Activation of the 

receptor for advanced glycation end products triggers a p21(ras)-dependent mitogen-activated protein 

kinase pathway regulated by oxidant stress, J. Biol. Chem., 272 (1997) 17810-17814. 

[17] H.J. Huttunen, C. Fages, H. Rauvala, Receptor for advanced glycation end products (RAGE)-

mediated neurite outgrowth and activation of NF-kappaB require the cytoplasmic domain of the 

receptor but different downstream signaling pathways, J. Biol. Chem., 274 (1999) 19919-19924. 



www.manaraa.com

35 

 

 

[18] A. Hermani, B. De Servi, S. Medunjanin, P.A. Tessier, D. Mayer, S100A8 and S100A9 activate 

MAP kinase and NF-kappaB signaling pathways and trigger translocation of RAGE in human prostate 

cancer cells, Exp. Cell. Res., 312 (2006) 184-197. 

[19] C.H. Yeh, L. Sturgis, J. Haidacher, X.N. Zhang, S.J. Sherwood, R.J. Bjercke, O. Juhasz, M.T. 

Crow, R.G. Tilton, L. Denner, Requirement for p38 and p44/p42 mitogen-activated protein kinases in 

RAGE-mediated nuclear factor-kappaB transcriptional activation and cytokine secretion, Diabetes, 50 

(2001) 1495-1504. 

[20] L. Wang, S. Li, F.B. Jungalwala, Receptor for advanced glycation end products (RAGE) mediates 

neuronal differentiation and neurite outgrowth, J. Neurosci. Res., 86 (2008) 1254-1266. 

[21] S. Ghavami, I. Rashedi, B.M. Dattilo, M. Eshraghi, W.J. Chazin, M. Hashemi, S. Wesselborg, C. 

Kerkhoff, M. Los, S100A8/A9 at low concentration promotes tumor cell growth via RAGE ligation and 

MAP kinase-dependent pathway, J. Leukoc. Biol., 83 (2008) 1484-1492. 

[22] L.J. Pike, Lipid rafts: bringing order to chaos, J. Lipid Res., 44 (2003) 655-667. 

[23] D. Lingwood, K. Simons, Lipid rafts as a membrane-organizing principle, Science, 327 (2010) 46-

50. 

[24] K. Simons, M.J. Gerl, Revitalizing membrane rafts: new tools and insights, Nat. Rev. Mol. Cell 

Biol., 11 (2010) 688-699. 

[25] J. Ando, M. Kinoshita, J. Cui, H. Yamakoshi, K. Dodo, K. Fujita, M. Murata, M. Sodeoka, 

Sphingomyelin distribution in lipid rafts of artificial monolayer membranes visualized by Raman 

microscopy, Proc. Natl. Acad. Sci. U.S.A., 112 (2015) 4558-4563. 

[26] E.M. Adkins, D.J. Samuvel, J.U. Fog, J. Eriksen, L.D. Jayanthi, C.B. Vaegter, S. Ramamoorthy, U. 

Gether, Membrane mobility and microdomain association of the dopamine transporter studied with 

fluorescence correlation spectroscopy and fluorescence recovery after photobleaching, Biochemistry, 46 

(2007) 10484-10497. 

[27] N. Bag, S. Huang, T. Wohland, Plasma Membrane Organization of Epidermal Growth Factor 

Receptor in Resting and Ligand-Bound States, Biophys. J., 109 (2015) 1925-1936. 

[28] D.A. Brown, E. London, Functions of lipid rafts in biological membranes, Annu. Rev. Cell Biol., 

14 (1998) 111-136. 

[29] N. Arora, A. Syed, S. Sander, E.A. Smith, Single particle tracking with sterol modulation reveals 

the cholesterol-mediated diffusion properties of integrin receptors, Phys. Biol., 11 (2014) 066001. 

[30] T.J. Pucadyil, A. Chattopadhyay, Role of cholesterol in the function and organization of G-protein 

coupled receptors, Prog. Lipid Res., 45 (2006) 295-333. 

[31] A. Kusumi, K.G. Suzuki, R.S. Kasai, K. Ritchie, T.K. Fujiwara, Hierarchical mesoscale domain 

organization of the plasma membrane, Trends Biochem. Sci., 36 (2011) 604-615. 

[32] M.A. Reddy, S.L. Li, S. Sahar, Y.S. Kim, Z.G. Xu, L. Lanting, R. Natarajan, Key role of Src kinase 

in S100B-induced activation of the receptor for advanced glycation end products in vascular smooth 

muscle cells, J. Biol. Chem., 281 (2006) 13685-13693. 

[33] M.P. Lisanti, P.E. Scherer, J. Vidugiriene, Z. Tang, A. Hermanowski-Vosatka, Y.H. Tu, R.F. Cook, 

M. Sargiacomo, Characterization of caveolin-rich membrane domains isolated from an endothelial-rich 

source: implications for human disease, J. Cell Biol., 126 (1994) 111-126. 

[34] O. Sbai, T.S. Devi, M.A. Melone, F. Feron, M. Khrestchatisky, L.P. Singh, L. Perrone, RAGE-

TXNIP axis is required for S100B-promoted Schwann cell migration, fibronectin expression and 

cytokine secretion, J. Cell Sci., 123 (2010) 4332-4339. 

[35] F. Xiong, S. Leonov, A.C. Howard, S. Xiong, B. Zhang, L. Mei, P. McNeil, S. Simon, W.C. Xiong, 

Receptor for advanced glycation end products (RAGE) prevents endothelial cell membrane resealing 

and regulates F-actin remodeling in a beta-catenin-dependent manner, J. Biol. Chem., 286 (2011) 

35061-35070. 

[36] T.J. Feder, I. Brust-Mascher, J.P. Slattery, B. Baird, W.W. Webb, Constrained diffusion or 

immobile fraction on cell surfaces: a new interpretation, Biophys. J., 70 (1996) 2767-2773. 



www.manaraa.com

36 

 

 

[37] E.J. van Zoelen, L.G. Tertoolen, S.W. de Laat, Simple computer method for evaluation of lateral 

diffusion coefficients from fluorescence photobleaching recovery kinetics, Biophys. J., 42 (1983) 103-

108. 

[38] H. Towbin, T. Staehelin, J. Gordon, Electrophoretic transfer of proteins from polyacrylamide gels 

to nitrocellulose sheets: procedure and some applications, Proc. Natl. Acad. Sci. U.S.A., 76 (1979) 

4350-4354. 

[39] P.T. Matsudaira, Strategies for obtaining partial amuni acid sequence data. In a practical guide to 

protein and peptide purification for microsequencing, in, Academic Press, New York, 1989, pp. 29-30. 

[40] D.W. Buster, J. Nye, J.E. Klebba, G.C. Rogers, Preparation of Drosophila S2 cells for light 

microscopy, J. Vis. Exp., (2010). 

[41] U.E. Schwab, C.M. Ribeiro, H. Neubauer, R.C. Boucher, Role of actin filament network in 

Burkholderia multivorans invasion in well-differentiated human airway epithelia, Infect. Immun., 71 

(2003) 6607-6609. 

[42] M.K. Shaw, L.G. Tilney, Induction of an acrosomal process in Toxoplasma gondii: visualization of 

actin filaments in a protozoan parasite, Proc. Natl. Acad. Sci. U.S.A., 96 (1999) 9095-9099. 

[43] R.D. Phair, S.A. Gorski, T. Misteli, Measurement of dynamic protein binding to chromatin in vivo, 

using photobleaching microscopy, Meth. Enzymol., 375 (2004) 393-414. 

[44] A. Syed, M.D. Lesoine, U. Bhattacharjee, J.W. Petrich, E.A. Smith, The number of accumulated 

photons and the quality of stimulated emission depletion lifetime images, Photochem. Photobiol., 90 

(2014) 767-772. 

[45] A. Boudaoud, A. Burian, D. Borowska-Wykret, M. Uyttewaal, R. Wrzalik, D. Kwiatkowska, O. 

Hamant, FibrilTool, an ImageJ plug-in to quantify fibrillar structures in raw microscopy images, Nat. 

Protoc., 9 (2014) 457-463. 

[46] J.V. Valencia, S.C. Weldon, D. Quinn, G.H. Kiers, J. DeGroot, J.M. TeKoppele, T.E. Hughes, 

Advanced glycation end product ligands for the receptor for advanced glycation end products: 

biochemical characterization and formation kinetics, Anal. Biochem., 324 (2004) 68-78. 

[47] L.A. Gross, G.S. Baird, R.C. Hoffman, K.K. Baldridge, R.Y. Tsien, The structure of the 

chromophore within DsRed, a red fluorescent protein from coral, Proc. Natl. Acad. Sci. U.S.A., 97 

(2000) 11990-11995. 

[48] H.J. Huttunen, J. Kuja-Panula, H. Rauvala, Receptor for advanced glycation end products (RAGE) 

signaling induces CREB-dependent chromogranin expression during neuronal differentiation, J. Biol. 

Chem., 277 (2002) 38635-38646. 

[49] H. Zong, A. Madden, M. Ward, M.H. Mooney, C.T. Elliott, A.W. Stitt, Homodimerization is 

essential for the receptor for advanced glycation end products (RAGE)-mediated signal transduction, J. 

Biol. Chem., 285 (2010) 23137-23146. 

[50] D. Mainali, A. Syed, N. Arora, E.A. Smith, Role of insulin receptor and insulin signaling on 

alphaPS2CbetaPS integrins' lateral diffusion, Eur. Biophys. J., 43 (2014) 603-611. 

[51] S. Sander, N. Arora, E.A. Smith, Elucidating the role of select cytoplasmic proteins in altering 

diffusion of integrin receptors, Anal. Bioanal. Chem., 403 (2012) 2327-2337. 

[52] F.J. Barrantes, Cell-surface translational dynamics of nicotinic acetylcholine receptors, Front. 

Synaptic Neurosci., 6 (2014) 25. 

[53] D.M. Owen, D. Williamson, C. Rentero, K. Gaus, Quantitative microscopy: protein dynamics and 

membrane organisation, Traffic, 10 (2009) 962-971. 

[54] J.A. Dix, A.S. Verkman, Crowding effects on diffusion in solutions and cells, Annu. Rev. 

Biophys., 37 (2008) 247-263. 

[55] J.F. Casella, M.D. Flanagan, S. Lin, Cytochalasin D inhibits actin polymerization and induces 

depolymerization of actin filaments formed during platelet shape change, Nature, 293 (1981) 302-305. 

[56] I. Spector, F. Braet, N.R. Shochet, M.R. Bubb, New anti-actin drugs in the study of the 

organization and function of the actin cytoskeleton, Microsc. Res. Tech., 47 (1999) 18-37. 



www.manaraa.com

37 

 

 

[57] M.R. Bubb, I. Spector, B.B. Beyer, K.M. Fosen, Effects of jasplakinolide on the kinetics of actin 

polymerization. An explanation for certain in vivo observations, J. Biol. Chem., 275 (2000) 5163-5170. 

[58] J. Kwik, S. Boyle, D. Fooksman, L. Margolis, M.P. Sheetz, M. Edidin, Membrane cholesterol, 

lateral mobility, and the phosphatidylinositol 4,5-bisphosphate-dependent organization of cell actin, 

Proc. Natl. Acad. Sci. U.S.A., 100 (2003) 13964-13969. 

[59] A. Goldin, J.A. Beckman, A.M. Schmidt, M.A. Creager, Advanced glycation end products: 

sparking the development of diabetic vascular injury, Circulation, 114 (2006) 597-605. 

  



www.manaraa.com

38 

 

 

2.7. Figures and Tables 

 

 

Figure 2.1. Western blot analysis of (A) GM07373 cell lysate, (B) GM07373-RAGE cell lysate, and (C) 

GM07373-RAGE-mRFP cell lysate. (Top) fluorescence image of the PVDF membrane probed with 

RAGE antibody; (bottom) fluorescence image of the PVDF membrane probed with RFP antibody. 

Unlabeled bands (three upper bands in the top image and three lower bands in the bottom image) are 

present in all lanes and likely represent non-specific interactions of antibodies.  
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Figure 2.2. Western blot analysis of phosphorylation in ERK in the GM07373 cell lysate with (1) no 

treatment, or (2) 5 mg/mL BSA-AGE treatment, and in the GM07373-RAGE cell lysate with (3) no 

treatment or (4) 5 mg/mL BSA-AGE treatment. (a) Fluorescence image of the PVDF membrane probed 

with phospho-ERK (p-ERK) antibody or vinculin antibody. (b) Average (n = 2) fluorescence intensities 

of the 42 kDa band of p-ERK divided by the vinculin band intensities.  
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Figure 2.3. Fluorescence images of GM07373-RAGE cells with the actin cytoskeleton stained with 

Atto 647 conjugated phalloidin. (a) No treatment, (b) 5 mM MβCD treatment, (c) 10 µM CD treatment, 

or (d) 3 µM Jsp treatment. Top two images are intensity scaled from 1700 to 7000 intensity units, 

whereas bottom two images are intensity scaled from 1500 to 3000 intensity units. Scale bar is 20 µm 

and is the same for all images.  
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Figure 2.4. Western blot analysis of actin expression in the GM0737-RAGE cell lysate with (1) no 

treatment, (2) 10 µM CD treatment, or (3) 3 µM Jsp treatment. (a) Fluorescence image of the PVDF 

membrane probed with actin or vinculin antibody. (b) Average (n = 2) fluorescence intensities of the 

actin band divided by the vinculin band intensities.  
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Figure 2.5. Western blot analysis of phosphorylation in ERK in the GM07373-RAGE cell lysate with 

(1) no treatment, (2) 10 µM CD treatment, or (3) 3 µM Jsp treatment. (a) Fluorescence image of the 

PVDF membrane probed with p-ERK or vinculin antibody. (b) Average (n = 2) fluorescence intensities 

of the 42 kDa p-ERK band divided by the vinculin band intensities  
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Figure 2.6. Effect of MβCD treatment on GM07373-RAGE cells. (a) Western blot analysis of 

phosphorylation in ERK and actin expression with (1) no treatment or (2) 5 mM MβCD treated. (b) 

Average (n = 2) vinculin-normalized fluorescence intensities of the 42 kDa band of p-ERK or actin. (b) 

Cholesterol quantification with Amplex
®

 Red assay. Average (n = 2) free cholesterol (3 and 4) and 

cholesterol ester (5 and 6) concentration as measured from GM07373-RAGE cell lysate at native 

cellular conditions (3and 5) and 5 mM MβCD treated (4 and 6). 
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Table 2.1. Average RAGE-mRFP diffusion parameters in the GM07373-RAGE-mRFP cell membrane 

obtained from FRAP. Entries with a p-value below 0.05 are shown in bold. 

 

Treatment 

α D1s  

(µm
2
/s) 

Mobile fraction 

(%) 

Number of cells 

No treatment 1.0 0.3 90 10 

MβCD treatment 1.1 

(p>0.1) 

0.2 

(p>0.1) 

80 

(p>0.05) 

11 

CD treatment 1.1 

(p>0.1) 

0.2 

(p>0.1) 

80 

(p<0.025) 

13 

Jsp treatment 0.9 

(p>0.1) 

0.3 

(p>0.1) 

80 

(p<0.025) 

9 

α is the time-exponent that describes time dependency of the diffusion 

D1s is the diffusion coefficient measured at 1s 
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Table 2.2. Average lipid mimetic (DiI) diffusion parameters in the GM07373-RAGE cell membrane 

obtained from FRAP. Entries with a p-value below 0.05 are shown in bold. 

 

Treatment 

α D
1s

 

(µm
2

/s) 

Mobile fraction 

(%) 

Number of cells 

No treatment 0.8 1.6 80 13 

MβCD treatment 0.8 

(p>0.1) 

1.0 

(p<0.025) 

84 

(p>0.1) 

9 

CD 

treatment 

0.9 

(p>0.1) 

1.0 

(p<0.01) 

84 

(p>0.1) 

9 

Jsp 

Treatment 

0.72 

(p>0.1) 

0.8 

(p<0.001) 

82 

(p>0.1) 

9 

α is the time-exponent that describes time dependency of the diffusion 

D1s is the diffusion coefficient measured at 1s 
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Table 2.3. Average anisotropy in F-actin fibers as analyzed by FibrilTool.  

Cells 

Treatment 
Average Anisotropy* Number of Cells 

GM07373 cells 
No treatment 

0.13 21 

GM07373 cells 
MβCD treatment 

0.08 (p<0.001) 41 

GM07373-RAGE cells 
No treatment 

0.12 32 

GM07373-RAGE cells 
MβCD treatment 

0.07 (p<0.001) 36 

*The standard deviation in anisotropy values obtained from 21 to 41 cells. 
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2.8. Supporting information for chapter 2 

Plasmids and transfection 

Full-length human RAGE coding pcDNA3 vector (pcDNA3.RAGE) was a generous gift from Prof. Ann 

Marie Schmidt (New York School of Medicine, [60]. pcDNA3.mRFP plasmid was purchased from 

Addgene (#13032, Cambridge, MA). All oligonucleotides were obtained from Integrated DNA 

Technologies (Coralville, IA). To generate mRFP fused RAGE (pcDNA3.RAGE-mRFP), the RAGE 

sequence of pcDNA3.RAGE was amplified by polymerase chain reaction (PCR) using 5'-CCGGAAT 

TCATGGCAGCCGGAACAGCAGTT-3' and 5'-CCGCTCGAGAGGCCCTCCAGTACTACTCTC-3' 

primers. The amplified RAGE region was sub-cloned into EcoRI/XhoI restriction sites of the 

pcDNA3.mRFP vector. The DNA sequence coding for human influenza hemagglutinin (HA) tag 

(YPYDVPDYA) was inserted in the N-terminal of RAGE and RAGE-mRFP plasmids using the 

following oligonucleotides 5’-TACCCGTACGACGTGCCGGACTACGCCATCACAGCCCGGATTG 

GC-3’ and 5’-GGCG- TAGTCCGGCACGTCGTAGTTTTGAGCACCTACTACTGCCC-3’ to generate 

pcDNA3.HA-RAGE or pcDNA3.HA-RAGE-mRFP plasmids. The recombinant plasmids were first 

transformed into DH5α E. Coli cells and transformed cells were selected on Luria broth agar (US 

biological, Salem, MA) plates containing 50 µg/mL Carbenicillin (Sigma-Aldrich, St. Louis, MO). 

GM07373 cells were transfected with purified recombinant plasmids obtained from DH5α cells using 

Lipofectamine 2000 using the manufacturer's instructions (Life Technology). Transfected GM07373 

cells were selected using Geneticine sulfate (Santa Cruz Biotechnology, Inc., Santa Cruz, CA) in the 

complete growth medium.  

 

Immunoprecipitation and LC-MS/MS analysis of RAGE and RAGE-mRFP 

RAGE and RAGE-mRFP were purified using an N-terminal HA tag. Cell lysates from HA-RAGE or 

HA-RAGE-mRFP expressing GM07373 cells were incubated overnight at 4 ºC with HA antibody 
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conjugated agarose beads (Thermo Scientific). Agarose beads were washed with phosphate buffered 

saline (PBS) five times to remove the non-specifically bound components from the crude cell lysate. 

Bound HA-RAGE or HA-RAGE-mRFP was eluted by incubating the beads at 70 ºC for 10 minutes 

with sodium dodecyl sulfate sample buffer (5% SDS, 5% Glycerol, 125 mM Tris-HCl (pH=6.8) and 

0.01% bromophenol blue) with a reducing agent (5 mM dithiothreitol). After centrifuging the beads 

(14,000 rpm, 3 minutes), supernatant from the elution step was directly added to a pre-cast protein gel 

for separation by electrophoresis.  Coomassie stained protein bands corresponding to HA-RAGE or HA-

RAGE-mRFP were excised from the gel and were digested with trypsin on an automated ProGest 

(Digilab, Marlborough, MA) protein digestion station.  Digested fragments were loaded onto the Q-

Exactive tandem mass spectrometer (Thermo Scientific) for LC-MS/MS analysis. The measured peptide 

fragments were searched with both SEQUEST and Mascot to identify sequence matches. 
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Figure S2.1. Western blot analysis for phosphorylation in ERK and vinculin expression in (1) 

GM07373 cell lysate (2) GM07373-RAGE cell lysate (3) GM07373-RAGE-mRFP cell lysate and (4) 

GM07373-RAGE-mRFP cell lysate treated with 10 µM CD. (a) Fluorescence image of the PVDF 

membrane probed with p-ERK or vinculin antibody. (b) Fluorescence intensities of the 42 kDa p-ERK 

band divided by the vinculin band intensities.   
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Figure S2.2. Average (n = 9 to 13) fluorescence recovery after photobleaching curves from RAGE-

mRFP diffusion measurements from GM07373-RAGE-mRFP cells. The diffusion properties obtained 

from the fit to the data (red line) are reported in Table 1. There is a statistically significant 10% decrease 

in the RAGE-mRFP mobile fraction after Cd and Jsp treatment. The mobile fraction (MF) is calculated 

with the equation  𝑀𝐹 =
𝐹∞−𝐹0

𝐹0−𝐹0
× 100 and depends on both the 0 second and 40 second (∞) data 

points.  
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Figure S2.3. Western blot analysis of actin expression in the GM07373 cell lysate (lacking detectable 

levels of RAGE) with (1) no treatment, (2) 10 µM CD treatment, or (3) 3 µM Jsp treatment. (a) 

Fluorescence image of the PVDF membrane probed with actin or vinculin (loading control) antibody. 

(b) Average (n = 2) fluorescence intensities of the actin band divided by the vinculin band intensities. 
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Figure S2.4. Average (n = 9 to 13) fluorescence recovery after photobleaching curves for a lipid 

mimetic (DiI) from GM07373-RAGE cells. The diffusion properties obtained from the fit to the data 

(red line) are reported in Table 4.2. 
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Figure S2.5. Western blot analysis for phosphorylation in ERK in the GM07373 cell lysate (lacking 

detectable levels of RAGE) with (1) no treatment, (2) 10 µM CD treatment, or (3) 3 µM Jsp treatment. 

The GM07373 cells probed have a low level of endogenous p-ERK in the absence of RAGE expression. 

(a) Fluorescence image of the PVDF membrane probed with p-ERK antibody or vinculin (loading 

control) antibody. (b) Average (n = 2) fluorescence intensities of the 42 kDa p-ERK band divided by the 

vinculin band intensities.   
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Figure S2.6. Western blot analysis for phosphorylation in ERK and actin expression in the GM07373 

cell lysate (lacking detectable levels of RAGE) with (1) no treatment or (2) 5 mM MβCD treatment. (a) 

Fluorescence image of the PVDF membrane probed with p-ERK, vinculin, or actin antibody. The 

GM07373 cells probed have a low level of endogenous p-ERK in the absence of RAGE expression. (b) 

Average (n = 2) fluorescence intensities of the 42 kDa p-ERK band or actin band divided by the 

vinculin band intensities.   
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CHAPTER 3 

LIGAND BINDING AFFINITY AND CHANGES IN THE LATERAL DIFFUSION OF 

RECEPTOR FOR ADVANCED GLYCATION ENDPRODUCTS (RAGE) 

A paper submitted for publication as a research article 
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1
, Qiaochu Zhu

1
 and Emily A. Smith 

 

 

3.1. Abstract 

The effect of ligand on the lateral diffusion of receptor for advanced glycation endproducts (RAGE), a 

receptor involved in numerous pathological conditions, remains unknown. Single particle tracking 

experiments that use quantum dots specifically bound to hemagglutinin (HA)-tagged RAGE (HA-

RAGE) are reported to elucidate the effect of ligand binding on HA-RAGE diffusion in GM07373 cell 

membranes. The ligand used in these studies is methylglyoxal modified-bovine serum albumin (MGO-

BSA) containing advanced glycation end product modifications. The binding affinity between soluble 

RAGE and MGO-BSA increases by 1.8 to 9.7-fold as the percent primary amine modification increases 

from 24 to 74% and with increasing negative charge on the MGO-BSA. Ligand incubation affects the 

HA-RAGE diffusion coefficient, the radius of confined domains of diffusion, and duration in confined 

domains of diffusion. There is, however, no correlation between MGO-BSA ligand binding affinity and 

the extent of the changes in HA-RAGE lateral diffusion. The ligand induced changes to HA-RAGE 

lateral diffusion do not occur when cholesterol is depleted from the cell membrane, indicating the 

mechanism for ligand-induced changes to HA-RAGE diffusion is cholesterol dependent. The results 

presented here serve as a first step in unraveling how ligand binding influences RAGE lateral diffusion.  

 

3.2. Introduction 

The receptor for advanced glycation endproducts (RAGE) is a transmembrane receptor that is involved 

in several pathological disorders [1-3]. It is a multi-ligand receptor with a diverse array of chemically 
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distinct ligands [4]. Although ligand induced RAGE signaling has been studied extensively in various 

pathological states, knowledge of the molecular diffusion of RAGE in the cell membrane is generally 

unknown. The lateral diffusion of membrane proteins plays a role in how receptors interface with other 

membrane proteins, extracellular ligands, and intracellular proteins, and more generally, how receptors 

function. The goal of the work reported herein is to understand the effect of ligand incubation on the 

lateral diffusion and signaling of RAGE in GM07373 bovine artery endothelial cell membranes.  

RAGE belongs to the immunoglobulin superfamily, and consists of one variable (V) and two 

constant (C1 and C2) domains in the extracellular region, a single transmembrane domain and a short 

cytoplasmic tail. RAGE interacts with several ligands including advanced glycation endproducts (AGE), 

members of the S100/calgranulins family of proteins and amyloid-beta peptides [5-7]. AGE are the 

product of non-enzymatic protein cross linking through surface amino acid residues such as lysine, 

arginine and cysteine. The resulting AGE-modified proteins have a net increase in negative surface 

charge [8]. Although RAGE ligands are structurally different, all ligands are reported to contain 

negatively charged domains that are important for binding. Structural analysis of the RAGE 

extracellular domain with X-ray crystallography and nuclear magnetic resonance spectroscopy 

corroborates the notion that negatively charged ligands interact with positively charged V and C1-type 

RAGE ectodomains [9, 10].  

We have recently reported properties of RAGE lateral diffusion as measured by fluorescence 

recovery photobleaching (FRAP) [11]. The lateral diffusion of RAGE and RAGE-dependent signaling 

were found to be connected to the dynamics of the actin cytoskeleton. In a FRAP experiment, the 

measured diffusion parameters represent an ensemble average of numerous RAGE. However, receptor 

lateral diffusion is generally not synchronized across each receptor, and the heterogeneity of all possible 

diffusion behaviors is not measured by FRAP. For this purpose, it is necessary to probe the diffusion 

one receptor at a time. One such approach is single particle tracking (SPT), where the receptor is 

exogenously labeled with a fluorophore and the diffusion of labeled receptor is extracted by following 
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the trajectory of the label [12]. It is imperative that the signal from the fluorophore be bright and 

photostable to facilitate fast acquisition times over long durations. Inorganic quantum dots (QDs) satisfy 

the requirements, and the size of the QD is of similar magnitude to many receptors. Labeling specificity 

to the desired receptor is achieved by modifying the QD surface with a ligand or another similar strategy 

[13].  

Given the importance of electrostatic interactions in RAGE binding to ligand, increasing the 

negative charge of the ligand may influence binding and the functional consequences of binding to 

RAGE; this may include influencing the lateral diffusion of RAGE. To test this hypothesis, 

methylglyoxal modified-bovine serum albumin (MGO-BSA, a model AGE) with different extents of 

primary amine modification are prepared. The extent of modification is characterized by measuring free 

primary amine content and zeta potentials. Ligand binding between MGO-BSA and soluble RAGE 

(sRAGE, containing the RAGE extracellular domains V, C1 and C2) is measured in vitro using surface 

plasmon resonance (SPR). The effect of ligand on the lateral diffusion of HA-RAGE is measured with 

single particle tracking (SPT). The role of cholesterol in ligand-induced changes to HA-RAGE lateral 

diffusion is measured by depleting cellular cholesterol concentrations with methyl-β-cyclodextrin. 

Finally, HA-RAGE downstream signaling is studied by Western blot to identify possible correlations in 

HA-RAGE lateral diffusion, signaling, and ligand binding properties.  

 

3.3. Materials and Methods 

Cell culture, protein expression and Western blotting  

All microscopy and molecular biology experiments were performed using bovine artery GM07373 

endothelial cells (Coriell Institute Biorepositories, Camden, NJ) maintained according to the procedure 

described previously [11]. GM07373 cells were transfected with purified recombinant plasmid using 

Lipofectamine 2000 and the manufacturer's instructions (Life Technology). Transfected GM07373 cells 

were selected using Geneticin sulfate (Santa Cruz Biotechnology, Inc., Santa Cruz, CA). The transfected 
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cells were established to express HA-RAGE protein stably before microscopy or molecular biology 

experiments. Details of the HA-RAGE expression plasmid, soluble RAGE expression and purification 

and Western blotting experiments are provided in the supplementary material.  

 

Preparation and characterization of methylglyoxal (MGO) modified-bovine serum albumin (BSA) 

BSA was modified with different concentration of MGO to generate various MGO-BSA. 10 mM, 40 

mM, 60 mM, 80 mM and 100 mM MGO was incubated with 50 mg/mL BSA in 0.1 M phosphate 

buffered saline (PBS) pH 7.4 at 37 °C for five days. On the fifth day, unreacted MGO was removed by 

dialysis in 0.1 M PBS. The ortho-phthaldialdehyde assay was performed to evaluate the extent of 

modification via quantifying the free primary amine content of BSA [14]. The fluorescence intensity 

was measured with a microplate reader (Synergy 2 Multi-Mode Reader, BioTek) at excitation and 

emission wavelengths of 340 nm and 435 nm, respectively.  The resulting fluorescence intensities were 

translated into a percent modification using the signal measured from unmodified BSA (without MGO 

incubation) as a control. 

 

Zeta potential measurement 

The zeta potential and protein mobility of the prepared MGO modified-BSA were obtained using a 

Zetasizer Nano ZS (Malvern Instruments, Ltd) with laser Doppler velocimetry. MGO-BSA and BSA 

control were diluted five times in PBS solution at pH=7.4. Three replicates were measured for each 

sample at 25 °C and 200 continuous runs.  

 

Surface plasmon resonance (SPR) 

The binding affinity between MGO-BSA and sRAGE was measured using a home-built SPR 

instrument. The MGO-BSA was immobilized by physisorption on a 50-nm thick gold film. 100 nM 

sRAGE in HEPES buffer (pH=7.5) was pumped into a flow cell at the flow rate of 0.8 ml/min for one 



www.manaraa.com

59 

 

 

minute, and then the SPR response was monitored for 20 min. After the 20 min association step, the 

HEPES buffer was flowed for 1 min at the flow rate of 0.8 ml/min, and then the response during 

dissociation step was monitored for an additional 20 min. The kinetics parameters for the MGO-BSA 

sRAGE’s interaction were obtained from the resulting sensorgrams as previously reported using the 

equations provided in the supplementary material [15].  

 

Quantum dot conjugation and sample preparation for single particle tracking (SPT) 

Quantum dots (QDs) conjugated with streptavidin were used as a fluorescent probe in SPT experiments. 

5 µL of streptavidin coated QDs in 1µM borate buffer were added to 21 µL of HA-epitope tag antibody 

conjugated with biotin in 74 µL of PBS buffer (pH=7.4) and incubated for 2 hours at room temperature. 

The resulting anti-HA labeled QDs (AHA-QDs) were stored in the refrigerator until use.  

Cells were sub cultured onto 8-well Nunc™ Lab-Tek™ chambered glass slide for 24 hours. On 

the next day, spread cells were incubated with 3% (W/V) BSA in DMEM (BSA-DMEM) medium 

overnight before imaging experiments to minimize the nonspecific binding.  Cells were either used 

without further treatment or treated with specific MGO-BSA (5 mg/mL in BSA-DMEM) for 1 h. In the 

case of sequential cholesterol depletion, cells were further treated with MβCD (5 mM in BSA-DMEM) 

before labeling with AHA-QDs. For SPT experiments, AHA-QDs were sonicated for 2 h to avoid 

aggregation of the QDs. The AHA-QDs were diluted to 100 pM in the imaging medium containing 

0.1% (W/V) BSA. Cells were incubated with the AHA-QDs for 15 minutes at 37 ºC in the incubator. 

Cells were then rinsed with imaging medium five times before mounting the sample onto the 

microscope.  

The SPT experiments were performed using a Nikon Eclipse TE2000U microscope (Melville, 

NY, USA) operating in wide-field, epi-fluorescence mode with a 100× objective and mercury lamp 

illumination. Filter sets for excitation (425/45 nm) and emission (605/20 nm) were obtained from 

Omega Optical (XF304-1, Brattleboro, VT, USA). The microscope was housed inside a physiological 
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chamber. All imaging experiments were performed at 36 ± 2 ºC.  Fluorescence images were collected 

using a PhotonMAX 512 EMCCD camera (Princeton Instrument, Trenton, NJ, USA) with a 40 ms 

camera exposure time and a full-chip (512×512 pixels) field of view for a total of 40 s.   

 

QD binding specificity, localization, and tracking 

The AHA-QD binding specificity was measured using two cell lines: GM07373 cells that do not express 

HA-RAGE and GM07373 cells that express HA-RAGE. Nonspecific binding was reported as the 

average number of AHA-QDs in cells lacking HA-RAGE divided by the average number in cells 

expressing HA-RAGE. The ImageJ particle tracker 2D/3D plug-in implementing the algorithm 

developed by Sbalzarini and Koumoutsakos was used for detecting QDs, and calculating localization 

and tracking [16, 17]. The intrinsic blinking property of the QDs was used to identify single particles 

and the extracted single particle trajectories that were at least 8 s in duration (i.e., in between blinking 

events) were further analyzed.  

 

SPT data analysis 

Extracted single particle trajectories were analyzed using APM_GUI (Analyzing Particle Movement 

with Graphical User Interface), which is a MATLAB-implemented application based on an established 

algorithm reported by Simson and co-workers [18, 19]. Diffusion coefficients measured for AHA-QDs 

on GM07373 cells were used as a threshold to select mobile trajectories to account for the non-specific 

binding. All mobile trajectories were classified either as confined or as non-confined (Brownian) 

trajectories based on the probability of particle motion being Brownian in a given region. The 

probability level or the confinement index (L) was calculated for each trajectory to highlight the regions 

of confined behavior as described previously [19]. The simulated Brownian trajectories for a range of 

diffusion coefficients were used to estimate the critical confinement index (Lc) and critical confinement 

time (tc). These two parameters were used as a threshold to separate Brownian motion from confined 
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motion. In general, the greater the value of L, the greater the tendency for a trajectory to exhibit 

confined motion. For a given trajectory, a confined diffusion region is defined by the regions where L 

increases above a critical threshold Lc for a duration of time longer than a critical time tc. Based on the 

simulation data for Brownian trajectories, the trajectories with L > 3.16 for a duration tc > 1.95 s had a 

99.93 % likelihood to be in confined motion. For a trajectory classified as confined, the size of the 

confinement region, the duration of the confinement time, and the diffusion coefficients inside the 

confined zones and outside the confined regions were further analyzed. The plot of mean square 

displacement (MSD) vs time was used to calculate the characteristic diffusion coefficient of a given 

region [18]. 

 

3.4. Results and Discussion 

Characterization of MGO-BSA ligand and its interactions with RAGE  

Five MGO-BSA samples were prepared by incubating BSA with 10 to 100 mM MGO. Two of the 

possible amino acid modifications that occur after MGO incubation are shown in Figure S3.1. The 

extent of primary amine modification as measured by the ortho-phthaldialdehyde assay increases 

linearly (R
2
 = 0.98) when increasing concentrations of MGO are used for the in vitro modification of 

BSA (Figure 3.1A). The percent primary amine modification ranges from 24 to 74% compared to 

control BSA that is not incubated with MGO. BSA that has not been incubated with MGO has a net 

positive surface charge, but all MGO-BSA samples have a net negative surface charge that increases as 

the MGO concentration used for the modification of BSA increases (Figure 3.1B).  

 RAGE ligands mainly bind to the extracellular V and C1 domains [9, 10], so a soluble variant 

for RAGE (sRAGE) is commonly used as an antigen for binding affinity studies. Surface plasmon 

resonance measurements of the dissociation constant (Kd) between each MGO-BSA sample and sRAGE 

are shown in Figure S3.2. The Kd values obtained from the SPR curves are shown in Figure 3.1C. With 

increasing percent primary amine modification, the affinity of MGO-BSA for sRAGE increases (i.e., the 
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solution concentration of MGO-BSA required to occupy half of the available binding sites on sRAGE 

decreases). Combining the results of the affinity and MGO-BSA surface charge measurements, the 

affinity between sRAGE and MGO-BSA is linearly dependent (R
2
 = 0.94) on the net MGO-BSA 

negative surface charge, which is consistent with an interaction to a positively charged binding pocket 

on the V-domain of sRAGE.  

 

Extracellular HA epitope tag enables the specific labeling of QDs to RAGE  

Single particle tracking experiments require the specific binding between a nanoparticle and a receptor. 

In these studies the nanoparticles are fluorescent quantum dots (QDs). A ligand can be directly coated 

on the surface of the QDs [20, 21], however, up to 88% nonspecific binding is observed when ligand 

(AGE or S100 A8/A9)-coated QDs are incubated with cells that do not express RAGE (data not shown). 

A possible reason for the observed nonspecific binding may be due to the affinity of RAGE ligands for 

other membrane proteins [8]. As an alternative labeling route, the 9 amino acid (YPYDVPDYA) 

hemagglutinin (HA) tag was added to the RAGE extracellular domain at a position three amino acids 

away from the N-terminal of the signal peptide. The cellular signaling of HA-RAGE is similar to that of 

RAGE lacking the HA tag as measured by phosphorylation in ERK (p-ERK). There is a two-fold 

increase in p-ERK signaling in GM07373 cells expressing HA-RAGE compared to GM07373 cells that 

do not express detectable amounts of RAGE (Figure S3.3). This increase is consistent with the two-fold 

increase in p-ERK signaling in GM07373 cells expressing RAGE lacking the HA tag, as reported 

previously [11]. Lowest energy structures determined using the I-TASSER software suite [22-24] 

predict that the HA tag remains accessible to the antibody as shown in Figure S3.4.  

 Anti-HA-coated QDs (AHA-QDs) are generated by incubating streptavidin-coated QDs with 

biotin-labeled anti-HA to specifically label HA-RAGE. The specific binding of AHA-QDs for HA-

RAGE is measured using cells that are incubated with 100 pM AHA-QDs as shown in Figure S3.5. The 

number of AHA-QDs per cell is counted for at least 34 cells expressing HA-RAGE or lacking HA-
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RAGE. There is 4.8% nonspecific AHA-QD binding, indicating that a majority of the AHA-QDs 

observed in the HA-RAGE expressing cells are specifically bound to HA-RAGE. A goal of this work is 

to measure the diffusion properties of HA-RAGE as measured by the trajectories of AHA-QDs. The 

nonspecifically bound AHA-QDs on the cell membrane are immobile and do not diffuse. To prevent 

biasing the HA-RAGE diffusion measurements, the immobile AHA-QDs are excluded from the analysis 

since immobile trajectories could arise from either nonspecific binding or immobile HA-RAGE. 

Excluding the immobile AHA-QDs from the analysis does prohibit measuring the fraction of immobile 

HA-RAGE.  

 

Diffusion properties for the Brownian trajectories of HA-RAGE in the presence and absence of MGO-

BSA ligand 

Fluorescence microscopy is used to collect at least 400 trajectories of AHA-QDs from at least 10 cells 

to measure the diffusion of HA-RAGE in the presence or absence of MGO-BSA. Trajectories are 

classified as exhibiting either Brownian or confined diffusion. If the trajectory has a minimum of one 

confined domain (where the confinement index (L) is higher than the critical confinement value for 

longer than the critical time as described in the experimental section) then the trajectory is classified as 

confined. In the absence of ligand, 31% of HA-RAGE exhibit Brownian diffusion and 69% exhibit 

confined diffusion, indicating a majority of HA-RAGE measured by SPT exhibit confined diffusion at 

least once in ~20 seconds (i.e., the average length of a trajectory as shown in Table 3.1). When the cells 

are incubated with MGO-BSA, a 3 to 7% increase in the Brownian population is measured when the 

MGO-BSA percent primary amine modification is at least 41%.  

The average diffusion coefficient for the Brownian trajectories of HA-RAGE in the absence of 

ligand is 0.085 µm
2
/s. The histogram of diffusion coefficients (Figure 3.2) shows a bimodal population 

with maximum diffusion coefficients of 0.0006 and 0.065 µm
2
/s. When the cells are exposed to 24% 

MGO-BSA, the average diffusion coefficient drops to 0.039 µm
2
/s (Table 3.1). The distribution of 
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diffusion coefficients remains bimodal but with a higher percentage of the slower population (Figure 

3.2). Between 24% MGO-BSA and 62% MGO-BSA treatment, there is an increase in the average 

diffusion coefficient and a decrease in the population of HA-RAGE in the slower diffusion coefficient 

range. Interestingly, compared to the 62% MGO-BSA treatments, the average diffusion coefficient 

decreases after 74% MGO-BSA treatment, and there is a recurrence of the bimodal diffusion coefficient 

distribution. There is no direct correlation between the average HA-RAGE diffusion coefficient and 

MGO-BSA percent primary amine modification, net surface charge, or binding affinity. It is possible 

the binding affinity measured by SPR between sRAGE and MGO-BSA does not represent the affinity of 

MGO-BSA toward the full length RAGE in the cell, it is also possible that ligand binding to another 

receptor (as stated above AGE binds to other receptors) may indirectly impact RAGE diffusion.  

 

Diffusion properties for the fraction of HA-RAGE with at least one confined domain in the presence and 

absence of MGO-BSA ligand 

Two regions are identified for each trajectory classified as exhibiting a confined domain based on the 

measured confinement index (L). First, the regions where L is higher than the critical confinement value 

for longer than the critical time. Second, since the time HA-RAGE is in confined domains (Table 3.2) is 

less than the average trajectory time, parts of the trajectory represent diffusion outside confined 

domains. Outside of the confined domains, Brownian diffusion properties are expected. Table 3.2 and 

Figure 3.3 confirm that the diffusion coefficients measured outside the confined domains of diffusion 

are within expected experimental uncertainties to the values measured for the trajectories exhibiting 

pure Brownian diffusion (Table 3.1 and Figure 3.2), including a maximum average diffusion coefficient 

(0.085 µm
2
/s) measured after treatment with 62% MGO-BSA. When HA-RAGE is in a confined 

domain and in the absence of ligand, the average diffusion coefficient is 7-fold slower compared to HA-

RAGE exhibiting Brownian diffusion. For HA-RAGE in confined domains in the presence of MGO-

BSA, the same trends are measured in the average diffusion coefficient and the histogram of diffusion 
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coefficients as measured for HA-RAGE exhibiting Brownian diffusion, although the magnitude of the 

average diffusion coefficient is 4 to 6-fold slower within the confined domains (Table 3.2 and Figure 

3.4).  

The average confinement radius and time in confined domains measured for HA-RAGE in the 

absence of ligand were 0.199 µm and 3.89 seconds, respectively (Table 3.2). The confinement radius 

decreases after treatment with 24% MGO-BSA, and the confinement radius is the largest after 74% 

MGO-BSA treatment (Figure 3.5, Table 3.2). Overall the confinement radius shows the same trend as 

the average diffusion coefficient with increasing MGO-BSA percent primary amine modification. The 

time HA-RAGE remains in confined domains remains approximately 4 seconds after cellular incubation 

with MGO-BSA. While the size of the domains of confined diffusion varies with MGO-BSA 

incubation, the time HA-RAGE spends within these domains is relatively independent of ligand 

incubation. 

 

p-ERK signaling and HA-RAGE expression are independent of the percent primary amine modification 

on MGO-BSA 

Phosphorylation in ERK (p-ERK) and Akt (p-Akt) have been used to measure RAGE signaling [11, 25]. 

After incubation with MGO-BSA, there is a 2 to 2.4-fold increase in p-ERK signaling compared to p-

ERK measured in the absence of MGO-BSA (Figure 3.6A and 3.6B). There is no statistically significant 

difference in p-ERK signaling for cells incubated with varying MGO-BSA percent primary amine 

modification. A similar trend was measured for cells lacking HA-RAGE expression (Figure S3.3). It is 

possible that a non-RAGE-dependent mechanism is responsible for some or all of the increase in p-ERK 

signaling after incubation with MGO-BSA.   In contrast to the increasing p-ERK levels after MGO-BSA 

incubation, no statistically significant difference in p-Akt signaling is measured is cells expressing or 

lacking HA-RAGE (Figure S3.6). There is a 15 to 28% decrease in HA-RAGE expression after 

incubating cells with MGO-BSA (Figure 3.6C and 3.6D). As with p-ERK signaling, the reduced HA-
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RAGE expression is statistically the same regardless of the percent primary amine modification on 

MGO-BSA. Previously, RAGE expression was shown to be down regulated in monocytes upon 

incubation with AGE prepared by glyceraldehyde modification [26]. The glyceraldehyde-prepared AGE 

reported in this previous study best matches the AGE used in the studies reported herein. In some 

experimental conditions, RAGE expression has been shown to be upregulated by incubation with ligand 

[27, 28].  

 

Insight into the nature of the confined domains of diffusion: Cholesterol depletion eliminates the ligand-

induced changes to HA-RAGE diffusion 

Previously RAGE has been reported to be part of cholesterol rich membrane domains [29, 30]. 

However, cholesterol depletion did not affect the lateral diffusion properties of RAGE as observed with 

FRAP [11]. The effect of cholesterol depletion on ligand-induced changes in HA-RAGE lateral 

diffusion is explored by depleting cholesterol from untreated and 62% MGO-BSA-treated cells. 

Considering all diffusion properties for Brownian and confined diffusion, the changes in HA-RAGE 

diffusion that are measured after 62% MGO-BSA treatment are not measured when cholesterol is 

extracted from the membrane (Table 3.3, 3.4 and Figure S3.7, S3.8, S3.9 and S3.10). After treatment 

with 62% MGO-BSA and cholesterol extraction, the HA-RAGE diffusion parameters are similar to the 

values measured after cholesterol extraction without ligand incubation. The ligand-induced changes in 

HA-RAGE diffusion are cholesterol dependent, and are not measured when cholesterol concentrations 

and/or cholesterol-dependent structures in the membrane are altered.  

 

3.5. Conclusions 

MGO-BSA binding affinity to sRAGE was observed to be dependent on the percent primary amine 

modification and the net negative surface charge on the ligand. MGO-BSA incubation affected HA-

RAGE lateral diffusion, however, there was no direct correlation measured between ligand binding 
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affinity, net negative surface charge on the ligand and HA-RAGE diffusion coefficient, radius of 

confinement or duration of confinement. Cholesterol depletion was found to ameliorate the ligand 

induced changes on HA-RAGE lateral diffusion, indicating a direct or indirect role for cholesterol in 

MGO-BSA-induced changes to HA-RAGE diffusion. Other factors such as ligand valancy and receptor 

clustering, as well as, other membrane changes that may result from the MGO-BSA ligand are possible 

avenues for further study.  
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3.7. Figures and Tables  

 
Figure 3.1. Characterization of methylglyoxal modified-bovine serum albumin (MGO-BSA). (A) 

Percent modification of free primary amines in BSA as measured by an ortho-phthaldialdehyde assay 

after modification with the indicated concentration of MGO; (B) Measured Zeta potential for MGO-

BSA with the indicated percent primary amine modification; (C) Dissociation constant as measured by 

SPR for MGO-BSA with the indicated percent primary amine modification and sRAGE. 
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Figure 3.2. Histograms of diffusion coefficients for the Brownian trajectories of HA-RAGE in the 

GM07373 cell membrane treated with MGO-BSA having the indicated percent primary amine 

modification. The diffusion coefficient is plotted as the negative natural logarithm; slower diffusion 

coefficients appear on the right side of the graph. The dotted line is shown for clarity in comparing the 

changes in the distribution. 
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Figure 3.3. Histograms of diffusion coefficients for the confined trajectories (outside domains of 

confined diffusion) of HA-RAGE in the GM07373 cell membrane treated with MGO-BSA having the 

indicated percent primary amine modification. The diffusion coefficient is plotted as the negative 

natural logarithm. The dotted line is shown for clarity in comparing the changes in the distribution. 
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Figure 3.4. Histograms of diffusion coefficients for the confined trajectories (inside domains of 

confined diffusion) trajectories of HA-RAGE in GM07373 cell membrane treated with MGO-BSA 

having the indicated percent primary amine modification. The diffusion coefficient is plotted as the 

negative natural logarithm. The dotted line is shown for clarity in comparing the changes in the 

distribution. 

  



www.manaraa.com

74 

 

 

 
Figure 3.5. Distribution of confinement radius for the confined trajectories (inside domains of 

confined diffusion) of HA-RAGE in the GM07373 cell membrane treated with MGO-BSA having the 

indicated percent primary amine modification. The corresponding fits (red solid line) are obtained by 

fitting the distribution to a log-normal function. 
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Figure 3.6. Western blot analysis of phosphorylation in ERK (p-ERK) and HA-RAGE expression in the 

GM07373 cell lysate with: (Lane 1) no treatment, or 5 mg/mL MGO-BSA treatment with the following 

percent primary amine modification: (Lane 2) 24%, (Lane 3) 41%, (Lane 4) 57%, (Lane 5) 62%, or 

(Lane 6) 74%. Fluorescence images of the PVDF membrane probed with: (A) p-ERK antibody or 

vinculin antibody, and (C) RAGE antibody or vinculin antibody. Average (n = 5) fluorescence 

intensities of the: (B) 42 kDa band of p-ERK divided by the vinculin band and (D) RAGE band divided 

by the vinculin band. 
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Table 3.1. Average diffusion parameters for the Brownian trajectories of HA-RAGE in the GM07373 

cell membrane treated with MGO-BSA with the indicated percent primary amine modification. 

 % of Brownian 

trajectories 

D (µm
2
/s) Average length of the trajectory 

(s) 

No treatment 31% 0.085 20 ± 10 

24% MGO-BSA 

treatment 

31% 0.039 

(p < 0.01) 

19 ± 9 

41% MGO-BSA 

treatment 

36% 0.052 

(p < 0.01) 

19 ± 9 

57% MGO-BSA 

treatment 

34% 0.069 

(p < 0.01) 

20 ± 10 

62% MGO-BSA 

treatment 

39% 0.115 

(p < 0.01) 

20 ± 9 

74% MGO-BSA 

treatment 

36% 0.050 

(p < 0.01) 

30 ± 10 

Diffusion coefficients with a p-value below 0.05 are highlighted in bold to show statistically significant 

differences compared to the cells that were not treated. The percentage of Brownian trajectories is 

obtained from counting, so no uncertainty is provided. 
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Table 3.2. Average diffusion parameters for the confined trajectories of HA-RAGE in the GM07373 

cell membrane treated with MGO-BSA with the indicated percent primary amine modification. 

 D (µm
2
/s) 

(Outside 

confined 

domains) 

D(µm
2
/s) 

(Inside 

confined 

domains) 

Radius (µm) Confinement 

time (s) 

Average 

length of the 

trajectory (s) 

No treatment 0.060 0.012 0.199 3.89 32 ± 9 

24% MGO-BSA 

treatment 

0.031 

(p < 0.01) 

0.007 

(p < 0.01) 

0.138 

(p < 0.01) 

4.09 

(p < 0.01) 

31 ± 9 

41% MGO-BSA 

treatment 

0.050 

(p < 0.01) 

0.013 

(p=0.09) 
0.192 

(p < 0.01) 

3.90 

(p=0.07) 

30 ± 10 

57% MGO-BSA 

treatment 

0.053 

(p < 0.01) 

0.011 

(p=0.09) 

0.195 

(p=0.06) 

3.99 

(p=0.2) 

30 ± 10 

62% MGO-BSA 

treatment 

0.085 

(p < 0.01) 

0.026 

(p < 0.01) 

0.294 

(p < 0.01) 

3.46 

(p=0.19) 

31 ± 9 

74% MGO-BSA 

treatment 

0.042 

(p < 0.01) 

0.010 

(p=0.01) 

0.178 

(p=0.02) 

3.97 

(p < 0.01) 

20 ± 10 

Entries with a p-value below 0.05 are highlighted in bold to show statistically significant differences 

compared to the cells that were not treated.   
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Table 3.3. Average diffusion parameters for the Brownian trajectories for HA-RAGE in the GM07373 

cell membrane for the indicated cellular treatments. 

 % of 

Brownian 

trajectories 

D(µm
2
/s) Average length of the 

trajectory (s) 

No treatment 31% 0.085 20 ± 10 

62% MGO-BSA ligand 36% 0.115 

(p < 0.01) 

20 ± 9 

5 mM MβCD to extract 

cholesterol 

 

33% 0.036 

(p < 0.01) 

19 ± 9 

62% MGO-BSA and 5mM 

MβCD 

 

34% 0.041 

(p < 0.01) 

18 ± 9 

Diffusion coefficients with a p-value below 0.05 are highlighted in bold to show statistically significant 

differences compared to the cells that were not treated. The percentage of Brownian trajectories is 

obtained from counting, so no uncertainty is provided. 
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Table 3.4. Average diffusion parameters for the confined trajectories for HA-RAGE in the GM07373 

cell membrane for the indicated cellular treatments. 

 D (µm
2
/s) 

(Outside 

confined 

domains) 

D(µm
2
/s) 

(Inside 

confined 

domains) 

Radius 

(µm) 

Confinement 

time (s) 

Average 

length of the 

trajectory (s) 

No treatment 0.06 0.012 0.199 3.89 32 ± 9 

62% MGO-

BSA ligand 

0.085 

(p < 0.01) 

0.026 

(p < 0.01) 

0.294 

(p < 0.01) 

3.46 

(p=0.19) 

31 ± 9 

5 mM MβCD 

to extract 

cholesterol 

 

0.035 

(p < 0.01) 

0.003 

(p < 0.01) 

0.160 

(p < 0.01) 

3.94 

(p=0.55) 

30 ± 10 

62% MGO-

BSA and 5mM 

MβCD 

 

0.038 

(p < 0.01) 

0.008 

(p < 0.01) 

0.164 

(p < 0.01) 

3.92 

(p=0.33) 

30 ± 10 

Entries with a p-value below 0.05 are highlighted in bold to show statistically significant differences 

compared to the cells that were not treated. 
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3.8. Supporting Information for Chapter 3 

HA-RAGE plasmid, expression and purification 

Full-length human RAGE coding pcDNA3 vector (pcDNA3.RAGE) was a generous gift from Prof. Ann 

Marie Schmidt (New York School of Medicine) [1]. All oligonucleotides for generating recombinant 

proteins were obtained from Integrated DNA Technologies (Coralville, IA). The DNA sequence coding 

for human influenza hemagglutinin (HA) tag (YPYDVPDYA) was inserted in the N-terminal of RAGE 

plasmid using the following oligonucleotides 5’-TACCCGTACGACGTGCCGGACTACGCCATCA 

CAGCCCGGATTGGC-3’ and 5’-GGCGTAGTCCGGCACGTCGTAGTTTTGAGCACCTACTACT 

GCCC-3’ to generate pcDNA3.HA-RAGE plasmid as reported previously [2].  The recombinant 

plasmid was first transformed into DH5α E. Coli cells for expression and purification and transformed 

cells were selected on Luria broth agar (US biological, Salem, MA) plates containing 50 µg/mL 

Carbenicillin (Sigma-Aldrich, St. Louis, MO).  

 

Expression and purification of soluble RAGE 

Soluble RAGE (sRAGE) is an endogenous splice variant of full length RAGE lacking the 

transmembrane and intracellular domains. His-tagged sRAGE transformed E. Coli strain Origami™ B 

(DE3) was a generous gift from Dr. Walter Chazin (Vanderbilt University). The cells were grown at 37 

°C until the optical density at 600 nm was approximately 0.8 AU. Then sRAGE’s expression was 

induced with 0.5 mM isopropyl β-D-1-thiogalactopyranoside. After 6 hours at room temperature,  cells 

were harvested and the resulting cell pellet was resuspended in buffer A (20mM Tris-HCL, 300 mM 

NaCl, 20 mM imidazole at pH 8.0) with 5 mg/mL lysozyme. His-tagged sRAGE from the cell lysate 

was purified with nickel nitrilotriacetic acid (Ni-NTA) agarose beads (Qiagen) using the manufacturer’s 

instructions. The Ni-NTA column was washed with buffer A, and elution fractions were collected in 

buffer B (20 mM Tris-HCL, 300 mM NaCl, 150 mM imidazole at pH 8.0). The fractions containing 
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sRAGE were dialyzed with HEPES buffer (15 mM HEPES, 150 mM NaCl at pH 7.5) for 24 hours. 

Finally, the sRAGE’s concentration was quantified with the bicinchoninic acid assay.  

 

Kinetic equations for interaction between MGO-BSA and sRAGE in SPR experiment 

Taking into account the mass transfer in the flow channel, the interaction can be described by scheme 1. 

The sensorgrams (Figure S2) were fitted by equations 1-3. 

 
𝑑[𝐴𝐵]

𝑑𝑡
= 𝑘𝑜𝑛[𝐴]𝑠[𝐵] − 𝑘𝑜𝑓𝑓[𝐴𝐵] 

𝑑[𝐴]𝑠

𝑑𝑡
= 𝑘𝑡𝑟[𝐴]𝑏𝑢𝑙𝑘 − 𝑘𝑡𝑟[𝐴]𝑠 − 𝑘𝑜𝑛[𝐴]𝑠[𝐵] + 𝑘𝑜𝑓𝑓[𝐴𝐵] 

𝑑[𝐴]𝑏𝑢𝑙𝑘

𝑑𝑡
= −(𝑘𝑡𝑟[𝐴]𝑏𝑢𝑙𝑘 − 𝑘𝑡𝑟[𝐴]𝑠) 

 

Where [A]bulk is the solution concentration of sRAGE flowed into the flow cell. [A]s is the concentration 

of sRAGE due to the mass transfer near to the surface. [B] is the concentration of MGO-BSA. ktr is the 

mass transfer rate constant. kon and koff are the association and dissociation rate constant, respectively. 

The dissociation constant is defined as Kd = koff /kon.  

 

Western blot analysis 

GM07373 or HA-RAGE expressing GM07373 cells were sub-cultured in 25 cm
2
 culture flasks for 24 

hours. On the following day, cells were incubated in 3% BSA in DMEM media overnight. Cells were 

either used without further treatment or treated with specific 5 mg/mL MGO modified-BSA (MGO-

BSA) in DMEM with 3% (w/v) BSA for 1 hour. For sequential cholesterol depletion, cells were further 

incubated with 5 mM MβCD in in DMEM with 3% (w/v) BSA for 30 minutes. Cells were rinsed with 

phosphate buffered saline (PBS) prior to cell lysis.  Cell lysis was performed with 300 µL of cold RIPA 

buffer (150 mM sodium chloride, 1.0% NP-40 detergent, 0.5% sodium deoxycholate, 0.1%  SDS, 50 

Scheme 1 

Equation 1 

Equation 3 

Equation 2 
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mM Tris, pH 8.0) with Halt
TM

 protease inhibitor cocktail (1×, Thermo Scientific, Rockford, IL). After 

the initial lysis treatment, cells were passed through a 21 gauge needle to ensure complete cell lysis. The 

protein mixture (20 µL of the sample, 7 µL of gel loading buffer and 3 µL of sample reducing agent) 

was first separated on a NuPAGE
®
 Novex

®
 4-12% Bis-Tris protein gel (Life Technology, Eugene, OR) 

and then electro blotted onto Immun-Blot
®
 LF PVDF membrane (Bio-Rad, Hercules, CA) as described 

previously [3, 4]. The primary antibodies used for probing the PVDF membrane were: anti-RAGE 

rabbit (H-300, Santa Cruz Biotechnology), anti-vinculin goat (sc-7649, Santa Cruz Biotechnology), 

anti-p-ERK rabbit (Tyr 204, sc-101761, Santa Cruz Biotechnology), anti-p-Akt rabbit (Ser 473, sc-

101761, Santa Cruz Biotechnology). Fluorescence from the labeled secondary antibody was measured 

on a Typhoon FLA 9500 variable mode laser scanner (GE Healthcare, Waukesha, WI). The vinculin 

protein band was used as a loading control in all Western blot experiments. The resulting fluorescence 

band intensities were quantified with ImageJ. 
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Figure S3.1. Two of the chemical modifications on lysine and arginine residues after incubation with 

methylglyoxal. A more complete list of protein modifications that can occur after incubation with 

methylglyoxal can be found in a review by Vistoli et al  [5]. 
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Figure S3.2. Measured surface plasmon resonance (SPR) response over time for binding between 

MGO-BSA with the indicated percent primary amine modification and sRAGE. The corresponding fits 

to equations 1 to 3 are shown as solid black lines.  
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Figure S3.3. Western blot analysis of the GM07373 cell lysate (no detectable RAGE expression) 

with: (Lane 1) no treatment, or 5 mg/mL MGO-BSA treatment with the following percent primary 

amine modification: (Lane 2) 24%, (Lane 3) 41%, (Lane 4) 57%, (Lane 5) 62%, or (Lane 6) 74%. (Lane 

7) No treatment HA-RAGE expressing GM07373 cell lysate shows higher p-ERK intensities 

compared to cells that do not express RAGE (Lane 1). (A) Fluorescence images of the PVDF membrane 

probed with p-ERK antibody or vinculin antibody. (B) Average (n = 5) normalized fluorescence 

intensities of the 42 kDa band of p-ERK divided by the vinculin band. 
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Figure S3.4. I-TASSER suite (http://zhanglab.ccmb.med.umich.edu/I-TASSER/about.html) top 5 

predicted models for the extracellular domains (V, C1 and C2) of RAGE containing the HA tag (shown 

in red). Models are reoriented with PyMOL protein structure visualization software for clarity.  
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Figure S3.5. Representative fluorescence images after incubation of 100 pM AHA-QDs (in 0.1 % w/v 

BSA-imaging medium for 15 minutes at 37 ºC) with:  (A) GM07373 and (B) HA-RAGE expressing 

GM07373 cells. The cell boundaries are outlined in white. The scale bar in the lower left corner of the 

image B is the same for both images: 20 µm. 

  



www.manaraa.com

88 

 

 

 

    

 

Figure S3.6. Western blot analysis of the (A, B) HA-RAGE expressing GM07373 or (C, D) 

GM07373 cell lysate with: (Lane 1) no treatment, or 5 mg/mL MGO-BSA treatment with the following 

percent primary amine modification: (Lane 2) 24%, (Lane 3) 41%, (Lane 4) 57%, (Lane 5) 62%, or 

(Lane 6) 74%. (A, C) Fluorescence images of the PVDF membrane probed with p-Akt antibody or 

vinculin antibody. (B, D) Average (n = 5) normalized fluorescence intensities of the 42 kDa band of p-

Akt divided by the vinculin band.  
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Figure S3.7. Histograms of diffusion coefficients for the Brownian trajectories of HA-RAGE in the 

GM07373 cell membrane treated with: (A) No treatment; (B) 5 mM MβCD to extract cholesterol from 

the membrane; (C) 62% MGO-BSA and (D) 62% MGO-BSA and 5 mM MβCD. The diffusion 

coefficient is plotted as the negative natural logarithm; slower diffusion coefficients appear on the right 

side of the graph. The dotted line is shown for clarity in comparing the changes in the distribution. 
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Figure S3.8. Distribution of confinement radius for the confined trajectories (inside domains of 

confined diffusion) of HA-RAGE in the GM07373 cell membrane treated with: (A) No treatment; (B) 

5 mM MβCD to extract cholesterol from the membrane; (C) 62% MGO-BSA and (D) 62% MGO-BSA 

and 5 mM MβCD. The corresponding fits (red solid line) are obtained by fitting the distribution to a log-

normal function. 
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Figure S3.9. Histograms of diffusion coefficients for the confined trajectories (inside domains of 

confined diffusion) of HA-RAGE in the GM07373 cell membrane treated with: (A) No treatment; (B) 

5 mM MβCD to extract cholesterol from the membrane; (C) 62% MGO-BSA and (D) 62% MGO-BSA 

and 5 mM MβCD. The diffusion coefficient is plotted as the negative natural logarithm. The dotted line 

is shown for clarity in comparing the changes in the distribution. 
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Figure S3.10. Histograms of diffusion coefficients for the confined trajectories (outside domains of 

confined diffusion) of HA-RAGE in the GM07373 cell membrane treated with: (A) No treatment; (B) 

5 mM MβCD to extract cholesterol from the membrane; (C) 62% MGO-BSA and (D) 62% MGO-BSA 

and 5 mM MβCD. The diffusion coefficient is plotted as the negative natural logarithm. The dotted line 

is shown for clarity in comparing the changes in the distribution. 
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CHAPTER 4    

THE ROLE OF A CONSERVED MEMBRANE PROXIMAL CYSTEINE IN ALTERING 

αPS2CβPS INTEGRIN DIFFUSION 

A paper submitted for publication as a research article 

Aleem Syed, Neha Arora, Thomas A. Bunch
b
, and Emily A. Smith

 

4.1. Abstract 

Cysteine residues (Cys) in the membrane proximal region are common post-translational modification 

(PTM) sites in transmembrane proteins. Herein, the effects of a highly conserved membrane proximal α-

subunit Cys
1368

 on the diffusion properties of PS2CPS integrins are reported. Sequence alignment 

shows that this cysteine is palmitoylated in human α3 and α6 subunits. Replacing Cys
1368 

with valine 

(Val
1368

) putatively blocks a PTM site and alters integrins' ligand binding and diffusion characteristics. 

Both fluorescence recovery after photobleaching (FRAP) and single particle tracking (SPT) diffusion 

measurements show Val
1368 

integrins are more mobile compared to Cys
1368

 integrins. Approximately 

33% and 8% more Val
1368 

integrins are mobile as measured by FRAP and SPT, respectively. The mobile 

Val
1368 

integrins also exhibit less time-dependent diffusion, as measured by FRAP. Tandem mass 

spectrometry data suggest that Cys
1368

 contains a redox or palmitoylation PTM in PS2CPS integrins. 

This membrane proximal cysteine may play an important role in the diffusion of other alpha subunits 

that bear this conserved residue.  
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4.2. Introduction 

The integrin family of cell surface receptors plays a critical role in many fundamental cellular processes 

like cell adhesion, progression, growth, and proliferation [1]. Integrins mediate bidirectional signaling 

across the cell membrane [2]. This signaling occurs via ligand binding to integrins (outside-in signaling) 

and via binding of several cytosolic proteins (inside-out signaling). In general, signaling depends on the 

concentration of the involved proteins and also their correct localization in the signaling region [3]. 

Recent studies highlighted the importance of post-translational modifications (PTM) in localizing a 

protein into membranes and membrane domains [4]. The goal of the current study is to identify the role 

of a highly conserved membrane proximal cysteine (Cys
1368

) of the αPS2CPS integrins on the 

receptor's lateral diffusion in the cell membrane.  

Due to the nucleophilicity and redox sensitivity of non-disulfide cysteine amino acid residues, 

they are prone to various PTMs [5, 6]. Cysteine residues are modified through both spontaneous and 

enzyme-catalyzed reactions. Some of the common modifications include oxidation (e.g. sulfhydration, 

glutathionylation, sulfenylation, sulfonation, and nitrosation), prenylation, palmitoylation, and Michael 

addition with lipid-derived electrophiles [7-11]. In addition to these, there are rare modifications at 

cysteine such as methylation and phosphorylation that are reported for both eukaryotic and prokaryotic 

proteins [12]. There are diverse functional consequences on protein localization, interactions, and 

trafficking in the cell membrane as a result of cysteine PTMs [13]. Alterations in cysteine PTMs are 

reported to contribute to proliferative and degenerative diseases [14-16].  

Figure 4.1 depicts the multiple sequence alignment of the transmembrane and cytoplasmic 

domains of selected integrin α subunits of Caenorhabditis elegans, Drosophila melanogaster, Homo 

sapiens, and Mus musculus. There is a cysteine in the membrane proximal region that is conserved 

among all the subunits. This specific cysteine is palmitoylated in human α3 and α6 integrin subunits 

[17].  Palmitoylation increases the affinity of proteins towards membranes nanodomains [18]. This leads 
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to the hypothesis that the highly conserved cysteine in the membrane proximal region of αPS2CPS 

integrins and its putative PTMs play a role in governing the receptor's biophysical properties. 

Additionally, it has been reported that the highly conserved GFFXR domain adjacent to the cysteine 

regulates the adhesive and ligand binding properties of integrins. The deletion of the cytoplasmic tail 

after the GFFXR domain, deleting the GFFXR domain, or mutating the GFFXR sequence resulted in a 

two to twelve-fold increase in ligand binding affinity compared to wild-type human and Drosophila 

integrins in several cell types [19-22]. On the other hand, there was a two-fold decrease in ligand 

binding affinity when Cys
1368

 is replaced with Val
1368

 in the α subunit of αPS2CβPS integrins [23]. If 

Cys
1368

 alters PS2CPS integrin diffusion properties, it is expected that a mutation to a different 

residue at this position will produce altered diffusion properties compared to the wild-type receptor. We 

test this hypothesis by generating a Val
1368 

mutation through site directed mutagenesis. The 

consequences of this mutation on integrin diffusion are measured using fluorescence microscopy. 

Ensemble diffusion, that is an average across numerous receptors, is measured using fluorescence 

recovery after photobleaching (FRAP) and the diffusion of single receptors is measured using single 

particle tracking (SPT).  Since receptor diffusion is primarily non-synchronous, measuring one receptor 

at a time accounts for diffusion heterogeneity. Finally, tandem mass spectrometry is used to identify 

potential PTMs at Cys
1368

.   

 

4.3. Materials and Methods 

Cell culture  

Drosophila S2 cells were grown in Shields and Sang M3 insect media (M3, Sigma) supplemented with 

10% fetal bovine serum (Irvine Scientific), 12.5 mM streptomycin, 36.5 mM penicillin, and 0.2 μM 

methotrexate (Fisher Scientific). Six stably transformed S2 cell lines were developed by expressing:  (i) 

wild-type (αPS2CβPS) integrins, (ii) Val
1368

 (αPS2C(C1368V)βPS) integrins, (iii) Venus yellow 
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fluorescent protein (YFP)-tagged wild-type integrins, (iv) YFP-tagged Val
1368

 integrins, (v) HA 

(YPYDVPDYA)-tagged wild-type integrins, and (vi) HA-tagged Val
1368

 integrins. YFP or HA tags 

were inserted in the serine rich loop of the αPS2C subunit as reported previously [20]. The heat shock 

inducible promoter was used to express all exogenous proteins. Cells were maintained in a 22°C 

incubator and were heat-shocked in a 36 °C water bath for 30 min to induce expression of integrins 

before conducting any further experiments.  

 

Immunoprecipitation and LC-MS/MS analysis of wild-type and Val
1368

 integrins  

Both wild-type and Val
1368

 integrin alpha subunits were purified using an HA (YPYDVPDYA) epitope 

tag. S2 cells expressing HA-tagged wild-type or Val
1368

 integrins were heat-shocked for 30 minutes in a 

36 °C water bath. Cells were kept in a 22 °C incubator for 3 hours before cell lysis. Cells were lysed 

using RIPA buffer (150 mM sodium chloride, 1.0% NP-40 detergent, 0.5% sodium deoxycholate, 0.1% 

sodium dodecyl sulfate, 50 mM Tris, pH8.0) as described previously [24]. Cell lysates were incubated 

with Pierce™ anti-HA magnetic beads using the manufacturer's instructions. Bound HA-tagged wild-

type or Val
1368

 integrin alpha subunit was eluted by incubating the beads at 95 ºC for 10 minutes with 

sodium dodecyl sulfate sample buffer (5% SDS, 5% Glycerol, 125 mM Tris-HCl (pH=6.8) and 0.01% 

Bromophenol Blue). Supernatant from the elution step was directly added to a pre-cast protein gel for 

separation by electrophoresis. Coomassie stained protein bands corresponding to wild-type or Val
1368

 

integrin alpha subunit were excised from the gel and were digested with trypsin or chymotrypsin on an 

automated ProGest (Digilab, Marlborough, MA) protein digestion station. Digested fragments were 

loaded onto the Q-Exactive tandem mass spectrometer (Thermo Scientific) for LC-MS/MS analysis. 

The measured peptide fragments were searched for potential PTMs including sulfhydration (addition of 

–SH), nitrosation (addition of –NO), sulfonation (addition of -SO3) and palmitoylation (addition of 

palmitic acid through acylation of thiol on cysteine). 
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Instrumentation 

A Nikon Eclipse TE2000U microscope (Melville, NY, USA) equipped with an oil immersion objective 

(100× 1.49 NA) was used for all microscopy experiments. A mercury lamp was used for imaging, and 

fluorescence images were collected using a PhotonMAX 512 EMCCD camera (Princeton Instrument, 

Trenton, NJ, USA). For SPT, a filter set from Omega Optical (XF304-1, Brattleboro, VT, USA) was 

used for excitation (425/45-nm) and to collect the quantum dot emission (605/20-nm). FRAP images 

were collected using a 500/20-nm excitation and a 535/30-nm emission filter. 

 

FRAP microscopy  

FRAP data were collected and analyzed according to previously published protocols [24-26]. Briefly, 

cells expressing YFP-tagged wild-type or Val
1368

 integrins were plated onto ligand-coated glass slides. 

A series of images were acquired before and after photobleaching using mercury-lamp excitation on a 

timeframe of 75 s. Photobleaching was accomplished with the 488-nm line of an argon ion laser. Data 

were analyzed using ImageJ version 1.38. FRAP curves were fit to extract diffusion parameters 

according to the method of Feder et al. by fitting the recovery curves to three different models - 

Brownian, constrained, and mixed diffusion [27]. A reduced chi
2
 value closest to 1 was used to indicate 

the best-fit model, which was the mixed diffusion model for all presented data.  

 

Single particle tracking 

Amine-derivatized polyethylene glycol (PEG) quantum dots (Life Technologies) measuring 16 nm in 

diameter and with emission maxima at 605 nm were used for SPT measurements. Quantum dot probes 

for SPT were prepared as previously reported [25]. Briefly, quantum dots were conjugated with a 

recombinant version of the PS2CPS integrin ligand, RBB-tiggrin, by mixing a ratio of 1 quantum dot 

to 20 RBB-Tiggrin in 10 mM phosphate buffer, pH 8.5 for 2 h. The ligand-coated quantum dots were 
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sonicated for 2 h before diluting to the required concentration for cell incubation, and were then used 

within half an hour to limit the aggregation of quantum dots [25].  

Quantum dot-labeled integrins were localized and tracked using the Particle Tracker Plugin of 

ImageJ. A total of 91 trajectories were generated for each cell line. Data analysis was performed using a 

graphical user interface (GUI) in MATLAB to distinguish trajectories with Brownian diffusion, 

confined diffusion, to calculate diffusion coefficients, and to identify immobile integrin fractions [28]. 

 

4.4. Results and Discussion 

Cys
1368

 to Val
1368 

mutation
 
increases PS2CPS integrins' mobile fraction 

S2 cells expressing wild-type Cys
1368

 integrins or Val
1368 

integrins are used in this study to reveal the 

role of Cys
1368

 in altering the receptor's diffusion properties. Table 4.1 lists the diffusion parameters for 

both cell lines obtained from the FRAP curves shown in Figure 4.2. The percentage of mobile wild-type 

integrins is 59.9 ± 0.7%. In comparison, 93 ± 1% of the integrins are mobile in cells expressing Val
1368 

 

integrins. Similar to the FRAP results, SPT also measured more mobile integrin trajectories in the 

Val
1368

 cell line (80%) compared to the wild-type cell line (72%) as shown in Table 4.2. (The values 

measured by SPT are obtained from counting among all measured trajectories so no uncertainty is 

reported). Thus, the presence of Cys
1368

 results in the immobilization of a fraction of integrins.  

 A difference between the FRAP and SPT experiments is the population of integrins that are 

measured. All integrins with a fluorescent tag, that is all the integrins in these FRAP studies, contribute 

to the FRAP signal. On the other hand, the integrins must be bound to ligand on the quantum dot in 

order to generate a signal in SPT. This may explain the difference in the percentage change of the 

mobile fraction as measured by the two techniques. In other words, there is a smaller increase in the 

mobile fraction of the ligand-bound population of integrins measured by SPT as compared with the total 

integrin population as measured by FRAP when Cys
1368

 is replaced with Val
1368

. 
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Cys
1368

 to Val
1368 

mutation
 
generates more Brownian-like diffusion as measured by FRAP  

The  value measured by FRAP is indicative of the time dependence of the diffusion coefficient. An  

value of 1 represents Brownian diffusion; lower  values are indicative of more diffusion constraints 

and a time-dependent diffusion coefficient. For wild-type integrins, the measured  was 0.59 ± 0.01 and 

this increased to 0.74 ± 0.02 with Val
1368

 mutation, indicating more Brownian-like diffusion for Val
1368

 

integrins. The local constraints to the diffusion of membrane protein arise from interaction with other 

intracellular, membrane or extracellular components. The Val
1368 

mutation may alter one or a 

combination of interactions, resulting in less time-dependent diffusion. 

As measured by SPT, confined domains are defined as regions in the cell membrane where a 

receptor is located for a time period that is longer than can be explained by Brownian diffusion. 

Diffusion is Brownian when no confined domains exist during the observed trajectory. A confinement 

index, L, was calculated at each time point of each trajectory. An L greater than 3.16 for a duration 

greater than 1.125 s had a likelihood of greater than 99% to reflect confined diffusion as determined 

from simulated data [24]. Figure 4.3 shows trajectories and plots of the confinement index and diffusion 

coefficient for a trajectory exhibiting only Brownian diffusion and a trajectory with one confined 

domain (blue circle). As expected, the confinement index and diffusion coefficient are inversely 

proportional. 

There is no significant difference in the number of confined domains measured for wild-type and 

Val
1368 

integrins (3 confined domains per 30 seconds). When a trajectory shows regions of confinement, 

the trajectory is further analyzed to determine the size of the confined domains, time in the confined 

domains and the diffusion coefficient inside the confined domains. These parameters are calculated and 

compared between wild-type and Val
1368

 integrins (Table 4.2). Frequency histograms of confined 

domain size and duration of confinement are shown in Figures 4.4 and 4.5, respectively. For wild-type 

integrins, confined domains are 0.260 µm in diameter and the confinement lasted for an average of 2.36 
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s. There is no statistically significant change in either the time in (2.44 s) or diameter of (0.370 µm) 

confined domains measured for Val
1368

 integrins. While there is no statistically significant change in the 

average domain size, it is worthy to note that the largest domain size measured for wild-type integrins is 

896 nm, while the largest measured for Val
1368

 integrins is 2.520 µm.  

 

Alterations in the
 
diffusion coefficient after Cys

1368
 to Val

1368 
mutation 

The last diffusion property to consider is the diffusion coefficient. The average diffusion coefficient 

measured by FRAP at one second decreased 25% when Cys
1368

 in wild-type integrins is replaced with 

Val
1368

. As discussed above, the diffusion coefficient is time dependent as a result of  being less than 

one; the percent difference in the diffusion coefficient is also time dependent. 

For SPT data, an average diffusion coefficient from all points in the trajectory is calculated for 

the Brownian trajectories. Furthermore, the diffusion coefficients inside confined domains are 

separately calculated. As shown in Table 4.2, the average diffusion coefficient of Val
1368

 integrins was 

statistically similar to the average diffusion coefficient of wild-type integrins inside and outside 

confined domains (i.e., when diffusion is Brownian). This indicates that Cys
1368

 does not affect the 

average diffusion coefficient of the ligand-bound integrins as measured in SPT. There is a 4 order of 

magnitude spread (0.001 to 10 s) in diffusion coefficients measured by SPT, which is consistent with the 

high degree of diffusion coefficient heterogeneity for many receptors (Figure 4.6). 

 

 Post-translational modification of Cys
1368

  

Tandem mass spectrometry was used to identify modifications at Cys
1368 

on the αPS2C subunit. Trypsin 

digestion of wild-type αPS2C unexpectedly did not result in detection of the peptide containing Cys
1368

. 

Trypsin digests at lysine residues; in the case of the αPS2C subunit, there is a lysine adjacent to Cys
1368

 

at the C-terminus. Cleavage at this lysine should generate an easy to detect hydrophilic peptide. If 

trypsin does not cut at this adjacent lysine, however, the next nearest cut site is 36 amino acids away 
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into the extracellular domain. This would generate a hard to detect, large hydrophobic peptide. 

Interestingly, the expected fragment containing Val
1368 

was detected after trypsin digestion (Table 4.3), 

indicating the specific presence of Cys
1368 

prevents trypsin digestion. We hypothesize that a PTM at 

Cys
1368 

inhibits trypsin digestion (possibly due to steric hindrance) at the adjacent lysine. Peptides 

containing palmitoylated cysteine (Cys
104

 and Cys
170

) were detected in the fragment mass spectrum, 

however, these were found in small hydrophilic peptides. 

On the other hand, chymotrypsin digestion (primarily at tyrosine, phenylalanine, tryptophan, and 

to a lesser extent at leucine and methionine) of integrin αPS2C subunit does produce peptides containing 

Cys
1368

. The mapped amino acids are shown in Figure S4.1 in red font. The Cys
1368

 is observed to be 

modified with a sulfhydryl group or a sulfo group in four detected peptides as shown in Table 4.3. The 

peptides with sulfhydryl or sulfo-modified Cys
1368

 are detected in four independent analyses, although 

the confidence match in the fragment mass spectrum was low. In two of the four analyses, peptides 

containing Cys
1368

 are also observed to be nitrosylated (addition of –NO) as shown in Table 4.3. It is 

reported that cysteine modification occurs through nitrosation, as direct sulfhydration is not 

energetically favorable [29]. Palmitoylation at Cys
1368

, however, is not excluded based on the collected 

data. Detected palmitoylation sites measured after trypsin digestion produce the same PTM detected at 

Cys
1368 

after chymotrypsin digestion. It is possible that the PTM group added by palmitoylation may be 

labile in these chymotrypsin digests. In summary, redox PTMs were detected on Cys
1368

. Given the 

sequence homology to other integrin alpha subunits that are known to be palmitoylated at this site, it is 

highly suspected that Cys
1368

 is palmitoylated in PS2C.  

 

4.5. Conclusions 

This study revealed a role of Cys
1368

 in altering αPS2CβPS integrin diffusion. Both FRAP and SPT 

measured more mobile integrins when Cys
1368 

is mutated, as well as less time-dependent diffusion and a 

slower average diffusion coefficient as measure by FRAP.  Cys
1368

 is proposed to be an important PTM 
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site that regulates the diffusion properties of αPS2CβPS integrins; this conserved cysteine may play a 

similar role in the biophysical properties of the other integrins listed in Figure 4.1. 
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4.7. Figures and Tables 
 

 

 

Figure 4.1. Sequence alignment of integrin’s α-cytoplasmic and transmembrane domains across 

different species. The single-letter amino acid code is used. Species are: Ce, Caenorhabditis elegans; 

Dm, Drosophila melanogaster; Hs, Homo sapiens; Mm, Mus musculus. The amino acid sequence of 

Drosophila αPS2C domain is shown in bold and the conserved cysteines are shown in red.  

 

 

Figure 4.2. Average fluorescence recovery after photobleaching (FRAP) curves (open circles) and 

corresponding best fit (solid line) to the data. The diffusion parameters extracted from the fit are shown 

in Table 4.1. 
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Figure 4.3. Plots showing (A) a trajectory with a single confined domain depicted by a blue circle; (B) a 

Brownian trajectory with no confined domains. Right panel C-D shows instantaneous diffusion 

coefficient and confinement index plots. Confined domains are identified from the calculated 

confinement index (L). An L greater than 3.16 (shown by the dotted line in C and D) for a duration 

greater than 1.125 s has a greater than 99% likelihood to reflect confined diffusion. 
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Figure 4.4. Frequency histograms of the size of confined domains. The results were normalized to the 

total number of measured confined domains (wild-type: 49 confined domains over 539 seconds, and 

Val
1368 

mutant: 71 confined domains over 723 seconds). For clarity, two values are omitted from the 

Val
1368

 graph: one at 2.52 m and one at 2.08 m. 
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Figure 4.5. Frequency histograms of the duration of confined domains. The results were normalized to 

the total number of measured confined domains.  
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Figure 4.6. Histogram of diffusion coefficients of mobile wild-type and Val
1368

 integrins exhibiting (A) 

Brownian diffusion and (B) for diffusion within confined domains. Histograms were normalized with 

respect to the total number of trajectories in each data set. 
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Table 4.1. Diffusion parameters obtained from FRAP experiments.  

 D (1s) 

 (m
2
/s) 

α Mobile 

fraction(%) 

Wild-type integrins 0.69 ± 0.02 0.59 ± 0.01 59.9  ± 0.7 

Val
1368 

 integrins 0.52 ± 0.02 0.74 ± 0.02 93 ± 1 

Reported values ± one standard deviation are obtained by fitting the average recovery curve from at 

least 10 replicate measurements. 

 

 

Table 4.2. Diffusion parameters obtained from SPT experiments. 

p values are obtained from comparing wild-type and Val
1368

 data sets using the Kolmogorov–Smirnov 

(K-S) test.  

 Wild-type 

integrins 

Val
1368 

integrins 

Total Mobile trajectories (%) 72 80 

Average diffusion coefficient for Brownian 

trajectories (m
2
/s) 

0.27 0.10 (p=0.22) 

Number of confined domains in 30 seconds  3 3 

Average diffusion coefficient inside the 

confined domains (m
2
/s) 

0.013 0.031 (p=0.29) 

Average time in confined domains (s) 2.36 2.44 (p=0.57) 

Average diameter of the Confined domains 

(m) 

0.260 0.370 (p=0.16) 
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Table 4.3. Identified peptide fragment containing Cys
1368

 or Val
1368

 and corresponding identified post-

translational modification. 

Detected Peptides Detected Post Translational 

Modification 

MH
+
 (Da)  m/z (Da) 

VGFFNR 

 

none 739.39 370.20 

KCGFFNRNRPTD

HSQERQPL 

 

C2(Sulfo); R17(Deamidated) 2511.13 1256.07 

VWLLYKCGF 

 

C7(Sulfo) 1208.54 604.78 

LYKCGFFNRNRP

TDHSQERQPLRN

GYHGDEHL 

C4(Sulfo); N10(Deamidated); 

N24(Deamidated) 

3966.77 992.45 

LLYKCGFFNRNR

PTDHSQERQPL 

 

C5(Sulfo) 2899.38 1450.19 

LLYKCGF 

 

C5(Sulhydration) 844.45 422.73 

LYKCGFFNRNRP

TDHSQERQPL 

C4(Sulhydration); 

N8(Deamidated); 

N10(Deamidated) 

2709.30 903.78 

KCGFFNRNRPTD

HSQERQPLRNGY 

C2(Sulhydration); 

R9(Deamidated); 

R17(Deamidated); 

R21(Deamidated) 

2924.37 975.46 

LLYKCGFF 

 

C5(Sulhydration) 991.52 496.26 

YKCGFFNRNRPT

DHSQERQPL 

C3(Nitrosyl); R8(Deamidated); 

R10(Deamidated); 

R18(Deamidated) 

2625.18 875.73 

YKCGFFNRNRPT

DHSQERQPLRNG

Y 

 

C3(Nitrosyl) 3112.47 778.87 
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4.8. Supporting Information for Chapter 4 

 
 

Figure S4.1. Identified peptides (in red) for integrin αPS2C subunit in tandem mass spectrometry across 

two experiments. The data confirm that the separation and purification of the αPS2C subunit from the 

cell membrane was successful. The fragment in blue font represents the HA-tag. Underlined “C” residue 

represents Cys
1368

. 
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CHAPTER 5 

THE NUMBER OF ACCUMULATED PHOTONS AND THE QUALITY OF STIMULATED 

EMISSION DEPLETION LIFETIME IMAGES 

A paper published in Photochemistry and Photobiology as a research article 

(Photochem. Photobiol. 90,762-772 (2014). doi: 10.1111/php.12248) 

Aleem Syed, Michael D. Lesoine, Ujjal Bhattacharjee, Jacob W. Petrich and Emily A. Smith
 

5.1. Abstract 

Time binning is used to increase the number of photon counts in the peak channel of stimulated 

emission depletion (STED) fluorescence lifetime decay curves to determine how it affects the resulting 

lifetime image. The fluorescence lifetime of the fluorophore, Alexa Fluor 594 phalloidin, bound to F-

actin is probed in cultured S2 cells at a spatial resolution of ~40 nm. This corresponds to a ten-fold 

smaller probe volume compared to confocal imaging, and a reduced number of photons contributing to 

the signal. Pixel-by-pixel fluorescence lifetime measurements and error analysis show that an average of 

40 ± 30 photon counts in the peak channel with a signal-to-noise ratio of 20 is enough to calculate a 

reliable fluorescence lifetime from a single exponential fluorescence decay. No heterogeneity in the 

actin cytoskeleton in different regions of the cultured cells was measured in the 40- to 400-nm spatial 

regime.  
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5.2. Introduction  

Fluorescence microscopy has been unparalleled for probing living processes and imaging biological 

structures in their native environment [1, 2]. Despite the ease of implementation, the inherent inability to 

resolve closely spaced objects due to the diffractive nature of light remained a major drawback of 

optical microscopy for decades. Light emitted from a point source in the object plane produces a three 

dimensional intensity distribution with finite width in the image plane, known as a point spread function 

(PSF). Hence, closely-spaced point objects are not necessarily separated in the image plane. The 

diffraction limit hinders the resolution of objects closer than 200 to 300 nm in the lateral and 500 to 700 

nm in the axial direction using confocal optical microscopy. Sub-diffraction optical imaging techniques 

circumvent the diffraction limit, and many of these methodologies have a spatial resolution of 20 nm or 

better in the lateral and 30-50 nm in the axial directions [3-7]. Stimulated emission depletion (STED) 

imaging and STED fluorescence lifetime imaging are two sub-diffraction fluorescence techniques [3, 8-

10]. In STED microscopy, an improved spatial resolution is achieved by depleting the fluorescence from 

the periphery of the PSF with a doughnut shaped secondary beam called the depletion beam. Stimulated 

emission generates an effective PSF with a full-width at half-maximum (FWHM) of a few tens of 

nanometers in the image plane.  Resolution in STED microscopy mainly depends on the intensity of the 

depletion beam, beam alignment, beam quality, and proper gating of the signal [11-16]. Highly photo-

stable and bright fluorophores, such as the ATTO dye series or quantum dots, are required to achieve 

the best resolution with STED.   

Despite low photostabilities relative to many inorganic fluorophores, conventional organic dyes 

and fluorescent proteins are desirable in biological fluorescence microscopy due to their ease of 

implementation and biocompatibility. A major challenge of using these traditional fluorophores in 

STED fluorescence lifetime imaging, however, is collecting sufficient photons in the peak channel to 

extract meaningful lifetimes. Theoretical results have shown that one needs to have at least 185 photon 
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counts in a time window of 8 ns with 256 time channels to measure a 2.5 ns lifetime with 10% variance 

[17]. Single-molecule fluorescence detection of a dye in a mixture can, however, be performed with 

fewer photons by comparing the molecular lifetime with bulk lifetimes. Prummer et al., have shown that 

a total of ~500 photons is required to distinguish four fluorescence lifetimes with 99.9% confidence 

[18]. On the other hand, exact fluorescence lifetime measurements required ~5000 photon counts to 

resolve two constrained and two free lifetimes of auto-fluorescent NADH for data acquired in 256 time 

channels [19]. In this case, fluorescence decay profiles with ~5000 photon counts were achieved only 

after performing a 3×3 binning of adjacent detector pixels. This strategy increases the signal-to-noise 

ratios (SNR) in the decay curves, but at the expense of reduced spatial resolution. This strategy is thus 

not suitable for use in STED lifetime imaging. 

Herein, we quantitatively address how the number of photons in the peak channel affects STED 

fluorescence lifetime images. We discuss ways to increase the photon counts in the peak channel 

without spatially binning pixels, which compromises the spatial resolution that is the key advantage of 

using STED microscopy, or increasing acquisition times, which results in unwanted photobleaching that 

also degrades the spatial resolution [20]. Sub-diffraction lifetime imaging is implemented to study the 

actin cytoskeleton of cultured cells. Actin inside the cells exists in two forms, a globular monomeric G-

actin and polymeric fibrous F-actin. G-actin reversibly polymerizes into a double helical structure and 

produces thin filaments of F-actin [21]. Sub-diffraction and conventional confocal images are generated. 

A histogram of lifetimes of 262,144 pixels from confocal and STED lifetime images are compared, and 

lifetime from different parts of the cell are analyzed. 
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5.3. Materials and Methods 

Sample Preparation 

Cultured S2 cells were used in all the experiments. Culture techniques were described previously [22]. 

The cells (50 µL, 1.5×10
6
 cells/mL) were spread on clean glass coverslips (474030-9000-000, Carl Zeiss 

Microscopy, Thornwood, NY) for one hour. Unspread cells were rinsed away with phosphate buffer 

saline (PBS). Paraformaldehyde (4%, in PBS) was used to fix the cells for ten minutes, followed by 

rinsing with PBS. Triton X-100 (0.1%, in PBS) was used to permeabilize the membrane for 2 minutes 

followed by the rinsing with PBS. Cells were incubated with bovine serum albumin (1%, in PBS) to 

avoid nonspecific binding of dye to the glass surface. The actin cytoskeleton was stained with Alexa 

Fluor 594 conjugated with phalloidin (Life Technology, Gran Island, NY). Phalloidin specifically binds 

with F-actin [23, 24]. The sample was rinsed with PBS and embedded with mounting medium 

(VECTASHIELD Hardest Mounting Medium, Burlingame, CA), sandwiched with another coverslip and 

left to dry for 30 minutes before imaging. 

 

STED apparatus   

Our home-built STED system was previously described [12]. Briefly, a super-continuum laser (SC-450-

pp-he, Fianium, Southampton, UK) was split into a 570 (±5)-nm excitation beam and a 695 (±10)-nm 

STED beam using a polarizing beam splitter (DMLP605R, Thorlabs, Newton, New Jersey). The laser 

repetition rate was 2 MHz and the pulse widths for the excitation and STED pulses were approximately 

120 and 160 ps with pulse energies 50 pJ and 2 nJ, respectively. An optical delay was used in the STED 

beam path to offset the STED beam arrival on to the sample by ~100 ps. The doughnut profile of the 

STED beam was generated using a vortex phase plate (RPC Photonics, Rochester, NY). Half-wave 

plates and quarter-wave plates (Thorlabs) were used in the beam paths as required to adjust the 
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polarization. Spatially expanded STED and excitation beams were recombined using a dichoric mirror 

(ZT594RDC, Chroma, Bellows Falls, VT) and sent to the sample through a microscope (Eclipse Ti, 

Nikon, Melville, NY) immersion oil objective (CFI Apo TIRF 100x, 1.49 NA, Nikon) with a second 

dichroic mirror (635-70BPDC, Chroma). The fluorescence signal was collected by the same objective 

and guided to a photo-multiplier tube (PMT) detector (HPM-100-40, Becker and Hickl, Berlin, 

Germany).  A time-correlated, single-photon counting (TCSPC) card was linked to the PMT detector. 

 

Imaging  

Samples were raster-scanned over the excitation and STED beams using a sub-nanometer accurate piezo 

stage (Nano-PDQ375, Mad City Laboratories, Madison, WI). The STED and confocal images were 

acquired in consecutive scans. Photon counts at each pixel were recorded using single-photon counter 

v9.30 software (Becker and Hickl). An ~8 ns time window with 64 time channels was used for all 

measurements. All images were collected at room temperature with 7 ms per pixel dwell time with 

512×512 pixels. For all data presented herein, the STED image was collected first followed by the 

confocal image. There is no measured difference in the mean lifetime measured by STED or confocal 

imaging modes when image order is switched. 

 

Analysis   

Intensity images were analyzed with SPCImage (Becker and Hickl) software. Due to the delay between 

excitation and depletion beam, suppression of excited molecules with the depletion beam was not 

efficient at early time points. The signal from the first ~500 ps was discarded by time gating to achieve 

the best spatial resolution. 64-time channel fluorescence decay curves for 262,144 pixels of the image 

were extracted using SPCImage. 32- and 16-time channel curves were obtained from 64-time channel 
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data by adding adjacent two or four channels, respectively. All decay curves were fit to a single 

exponential decay using IGOR Pro V 6.32A (WaveMetrics Inc., Lake Oswego, OR). Variance (𝑣𝑎𝑟𝑁) in 

the fluorescence lifetime  (τ) for N number of collected photons was calculated using the equation [17]: 

𝑣𝑎𝑟𝑁 =
1

𝑁
𝜏2

𝜅2

𝑟2
[1 − 𝑒𝑥𝑝(−𝑟)] (

𝑒𝑥𝑝 (
𝑟
𝜅) [1 − 𝑒𝑥𝑝(−𝑟)]

[exp (
𝑟
𝜅) − 1]

2 −
𝜅2

𝑒𝑥𝑝(𝑟) − 1
)

−1

 

where, κ represents the number of time channels and r is T/τ. T is the measurement window of 

fluorescence data collection (8.2 ns). The standard deviation is the square root of the variance. Error bars 

in the lifetime histograms represent an average standard deviation of all measured fluorescence lifetimes 

in a specific bin. SNRs are calculated from the time gated data as the average signal from the initial six 

time channels divided by the average signal from the last six time channels. Cross sections were 

measured using ImageJ 1.44p (National Institutes of Health, USA). All cross sections were fit to a 

Lorentzian profile. Uncertainties in the cross section are the standard error in the fit. MATLAB version 

R2013a (Mathworks, Natick, MA) and Origin (OriginLab, Northampton, MA) were used for subsequent 

analysis.   

 

5.4. Results and Discussion 

40-nm spatial resolution STED images of the actin cytoskeleton 

F-actin in fixed cultured cells was stained with Alexa Fluor 594 conjugated with phalloidin. The actin 

cytoskeletal network was imaged with STED (Figure 5.1a and 5.1c) and conventional confocal 

microscopy (Figure 5.1b and 5.1d). Cross sections of selected actin projections were measured in both 

STED and confocal (Figure 5.1e) images. At cross section 1 in Figure 5.1a, the measured thickness of 

the actin fiber was 44 ± 4 nm, as determined by STED imaging, whereas the same fiber was observed to 

be 400 ± 80 nm with confocal imaging. A spatial resolution of 40 nm was reported previously for the 
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STED system used to collect similar data [12]. For the previous and current experiments, the 

microscope objective was underfilled to achieve the best spatial resolution in the STED imaging format. 

Optical artifact in the illumination profile due to defects in the optics can be minimized by underfilling 

the objective [25]. Underfilling the back aperture of the objective produces a nearly Gaussian 

illumination profile in the focal plane and reduces the effective numerical aperture of the objective. The 

expanded illumination in the focal plane degrades the spatial resolution in confocal images to ~400 nm, 

but provides the best spatial resolution in the STED imaging mode based on our experimental 

observation.  

In STED image Figure 5.1a, the actin projections shown in cross section 2 were two separate 

filaments with cross sections 120 ± 10 and 72 ± 7 nm. The same actin projections in confocal mode 

were convoluted to produce an apparent single fiber with a FWHM of 510 ± 40 nm. Similarly, at cross 

section 3 in Figure 5.1c, STED could resolve actin fibers with thicknesses of 100 ± 20 nm and 44 ± 6 

nm that appeared to be a single actin filament with a cross section of 800 ± 100 nm in the confocal 

image Figure 5.1d. Also, four adjacent actin fibers in cross section 4 (Figure 5.1c) were well resolved in 

the STED image with cross sections 70 ± 10, 70 ± 20, 250 ± 40 and 130 ± 20 nm. The same four actin 

fibers were poorly resolved into two fibers with thicknesses of 610 ± 90 and 800 ± 100 nm. Figure 5.1a 

and 5.1c show a STED imaging artifact. Intense features are surrounded by a shadow that slightly 

reduces signal to background ratios. This artifact is attributed to incomplete depletion from the depletion 

laser beam [12].  

 

STED lifetime imaging and the required number of peak channel photon counts to measure lifetimes 

accurately 

The smaller probe volume in the STED imaging mode correlates to probing a maximum of 60 Alexa 

Fluor 594 phalloidin molecules attached to F-actin. The confocal probe volume is ten-fold larger. An 
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average of 600 ± 400 and 2000 ± 2000 photons per pixel from 262,144 pixels was measured in the 

STED (Figure 5.1a) and confocal image (Figure 5.1b) with a time window of 8.2 ns and 64 channels. 

The standard deviation is large because background pixels (presumed to contain no Alexa Fluor 594 

molecules) have been included in the analysis. The average number of photon counts in the peak 

channel of the STED image was 40 ± 30 and the SNR was 20 for data collected in 64 time channels. In 

regards to STED lifetime imaging, extracting accurate fluorescence lifetimes may be problematic from 

the data with few photons in the peak channels. 

 In order to compare the lifetime extracted from the single-exponential fits of decay curves at 

each pixel in the STED lifetime image (Figure 5.1a) as the number of photons collected in the peak 

channel increases, time binning the decay curves was employed. Either 64, 32, or 16 channels were 

considered at each pixel of a 512×512 pixel image. Representative decay curves are shown in Figure 5.2 

for three pixels from the locations shown by the corresponding colored arrows in Figure 5.1a (a: 64 

channels, b: 32 channels and c: 16 channels). As the number of time channels is reduced, the quality of 

the fit increased with the number of photon counts in the peak channel. The adjusted R squared value of 

the fit is improved from 0.7 (64 channels) to 0.98 (16 channels) for the pixel represented with red 

symbols in Figure 5.2. Considering all 262,144 pixels in the image, the average number of counts in the 

peak channel is 40 ± 30, 70 ± 50 and 100 ± 100 for the 64, 32 and 16 time channel analyses, 

respectively. In all three cases, the time per channel (0.125 ns/channel to 0.5 ns/channel) is larger than 

the lifetime of Alexa Fluor 594 in the cell (approximately 2 ns). 

 The decay curves were fit to a single exponential function, and the average lifetimes were found 

to be statistically similar 2.0 ± 0.1, 2.1 ± 0.1 and 2.3 ± 0.2 ns as the number of time channels decreased 

from 64 to 32 to 16 for the first pixel highlighted in Figure 5.2. A histogram of lifetimes is suitable to 

evaluate whether this trend holds for all 262,144 pixels in the image (Figure 5.3). Histograms of 

lifetimes show remarkable similarities with Gaussian fits that have means of 2.0 ± 0.1, 1.9 ± 0.1 and 2.0 



www.manaraa.com

122 

 

 

± 0.1 ns for 64, 32 and 16 time channel data, respectively, and statistically similar widths. This indicates 

that an average of 40 ± 30 photons in the peak channel with a SNR of 20 is sufficient to extract 

meaningful lifetime values when the decay curves are fit to a single exponential function. This also 

shows that time binning can be applied to increase the number of photons in the peak channel without 

affecting the lifetime values.  

 

Comparison of diffraction limited and sub-diffraction fluorescence lifetime images 

Depending on the size of the feature that generates the fluorescence signal, the distribution of 

fluorescence lifetimes may vary for a diffraction-limited and a sub-diffraction microscopy experiment.  

For example, if there are domains that form in the tens of nanometer regime, and the lifetime of 

fluorophores in these regimes are altered compared to the "bulk" lifetime, STED lifetime imaging will 

reveal these altered lifetimes; whereas confocal imaging will produce an average lifetime. To evaluate 

the fluorescence lifetime distribution in sub-diffraction and diffraction limited imaging modes, 

fluorescence lifetimes measured for data collected in 64 channels for all 262,144 pixels in STED and 

confocal imaging were compared. Figure 5.4 shows the histograms of fluorescence lifetimes for the 

STED and confocal images of the same cell. Gaussian fits to STED and confocal distributions resulted 

in a mean fluorescence lifetime of 2.0 ± 0.1 and 1.76 ± 0.05 ns for Alexa Fluor 594 phalloidin, 

respectively. 

 In order to evaluate the reason for the 0.2 ns shift to longer lifetimes in the mean value of the 

STED distribution, background contributions to the histogram should be considered. There are three 

sources of background in the STED images. These are lifetimes that are generated in regions with 

concentrations of Alexa Fluor 594 that are below the detection limit (i.e., primary regions where the cell 

is not located), background that is generated from the depletion laser, and background that is generated 

from incomplete depletion of Alexa Fluor 594 at the periphery of the excitation beam. Incomplete 
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depletion does not shift the mean fluorescence lifetime nor alter the shape of the histogram compared to 

that shown in Figure 5.4 for the STED images (Figure 5.5a), and thus can be largely ignored when 

interpreting the histogram. If the depletion is not complete, however, the pixel frequency for any 

lifetime in the histogram may be slightly increased. Background form the STED laser alone is shown in 

Figure 5.5b for a solution of Alexa Fluor 594. Compared to the histogram generated using both the 

excitation and depletion lasers, the histogram generated using only the depletion laser shifts the mean 

frequency to longer lifetimes by 0.2 ns. The data in Figure 5.5b were collected for a solution. The 

difference between a solution Alexa Fluor 594 lifetime of 3.9 ns and the fluorescence lifetime measured 

in the cell could be the result of quenching inside the cell, as reported for fluorescein-type dyes [26, 27]. 

The background generated in regions with low concentrations of Alexa Fluor 594 produces a broad 

histogram with a mean of 1.7 ns (confocal) and 1.1 ns (STED) as shown in Figure 5.5c. In the confocal 

images, this is the only source of background and represents approximately 15% of all the pixels for the 

image shown in Figure 5.1b. In theory this contribution to the background could be removed with an 

intensity threshold representing the maximum background value. However, a histogram of pixel 

frequency verses intensity is continuous and application of a threshold will produce either false positive 

or false negative pixels, depending on the value of the threshold. Considering all three sources of 

background, the depletion beam is expected to be the main difference in the background between 

confocal and STED images. This is most likely the reason the STED histogram exhibits a slight shift to 

longer lifetimes compared to the confocal histograms. The extent of this shift depends on the 

concentration of Alexa Fluor 594 in the probed region. 

 Since the local environment of actin and the lifetime of Alexa Fluor 594 phalloidin bound to 

actin might be altered in different parts of the cell, lifetime histograms were also generated for selected 

regions of interest (Figure 5.6). In all regions except f, the mean value of the STED histogram has a 

statistically significant shift to longer lifetimes compared to the confocal data. The magnitude of the 
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shift varies from one region to another (0.4, 0.4, 0.3, 0.4, 0.4, 0.2 ns for a to f, respectively), and 

correlates with the mean fluorescence intensity for each region of interest. This is expected for increased 

background signal from the STED beam. The Alexa Fluor 594 concentration in region f is relatively low 

compare to other regions. The background from the depletion beam does not result in a statistically 

significant shift of the mean fluorescence lifetime compared to regions with higher fluorophore 

concentrations. The similarities in the STED and confocal fluorescence lifetime distributions, when 

expected from background are considered, indicate no detectable heterogeneity in the Alexa Fluor 594 

phalloidin environment is present in the 40- to 400-nm spatial regime.      

 

5.5. Conclusions 

Sub-diffraction images of the actin-cytoskeleton were generated with a spatial resolution of ~40 nm in 

cultured cells. The photon count in the peak channel was increased by time binning the 64 time channel 

data without compromising the spatial resolution. Detailed pixel-by-pixel analysis of fluorescence 

lifetime measurements with different photon counts in the peak channel has shown that an average of 40 

± 30 photons in the peak channel and approximately 600 photons collected in total with a SNR of 20 is 

enough to calculate reliable lifetimes. This is an important parameter since it governs the collection time 

required to obtain a meaningful fluorescence lifetime while reducing photodamage and photobleaching 

to biological samples and fluorophores. The current work used a 2 MHz laser. STED imaging with a 20 

MHz laser has been demonstrated. Assuming a 20 MHz laser was used and a 40% detection efficiency, 

600 photons could be recorded with a 75 microsecond dwell time per pixel. Under these experimental 

conditions, the state settling time (i.e., the time it takes after the translation stage moves to settle to a 

point where vibrations do not affect the data), which is one the order of a few milliseconds, represents 

the majority of the imaging time. Although the probe volume in the STED imaging mode is tenfold 

smaller compared to the confocal mode, similar fluorescence lifetime distributions of the fluorophore 
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attached to F-actin were obtained across the entire cultured cell when expected contributions from 

background are considered. However, the current study indicates STED fluorescence lifetime imaging 

can be used to probe heterogeneity in the 40-nm regime in biological samples in aqueous environments. 

 

Acknowledgments 

 The STED microscope was built using funds from the National Science Foundation Chemical Research 

Instrumentation and Facilities program (CHE-1026028) and image analysis was supported by the 

National Science Foundation under Grant CHE-0845236. Image collection was supported by the U.S. 

Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, 

and Biosciences through the Ames Laboratory. The Ames Laboratory is operated for the U.S. 

Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358.  

  



www.manaraa.com

126 

 

 

5.6. References 

[1] J.W. Lichtman, J.A. Conchello, Fluorescence microscopy, Nat. Methods, 2 (2005) 910-919. 

[2] B.N. Giepmans, S.R. Adams, M.H. Ellisman, R.Y. Tsien, The fluorescent toolbox for assessing 

protein location and function, Science, 312 (2006) 217-224. 

[3] S.W. Hell, J. Wichmann, Breaking the diffraction resolution limit by stimulated emission: 

stimulated-emission-depletion fluorescence microscopy, Opt . Lett., 19 (1994) 780-782. 

[4] M. Hofmann, C. Eggeling, S. Jakobs, S.W. Hell, Breaking the diffraction barrier in fluorescence 

microscopy at low light intensities by using reversibly photoswitchable proteins, Proc. Natl.  Acad. Sci. 

U.S.A., 102 (2005) 17565-17569. 

[5] M.J. Rust, M. Bates, X. Zhuang, Sub-diffraction-limit imaging by stochastic optical reconstruction 

microscopy (STORM), Nat. Methods, 3 (2006) 793-795. 

[6] E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. 

Davidson, J. Lippincott-Schwartz, H.F. Hess, Imaging intracellular fluorescent proteins at nanometer 

resolution, Science, 313 (2006) 1642-1645. 

[7] D. Wildanger, R. Medda, L. Kastrup, S.W. Hell, A compact STED microscope providing 3D 

nanoscale resolution, J. Microsc., 236 (2009) 35-43. 

[8] E. Auksorius, B.R. Boruah, C. Dunsby, P.M. Lanigan, G. Kennedy, M.A. Neil, P.M. French, 

Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime 

imaging, Opt. Lett., 33 (2008) 113-115. 

[9] J. Buckers, D. Wildanger, G. Vicidomini, L. Kastrup, S.W. Hell, Simultaneous multi-lifetime multi-

color STED imaging for colocalization analyses, Opt. Exp., 19 (2011) 3130-3143. 

[10] P.-Y. Lin, Y.-C. Lin, C.-S. Chang, F.-J. Kao, Fluorescence Lifetime Imaging Microscopy with 

Subdiffraction-Limited Resolution, Jpn. J. Appl. Phys., 52 (2013) 028004. 

[11] M.D. Lesoine, U. Bhattacharjee, Y. Guo, J. Vela, J.W. Petrich, E.A. Smith, Subdiffraction, 

Luminescence-Depletion Imaging of Isolated, Giant, CdSe/CdS Nanocrystal Quantum Dots, J. Phys. 

Chem. C, 117 (2013) 3662-3667. 

[12] M.D. Lesoine, S. Bose, J.W. Petrich, E.A. Smith, Supercontinuum stimulated emission depletion 

fluorescence lifetime imaging, J. Phys. Chem. B, 116 (2012) 7821-7826. 

[13] M. Leutenegger, C. Eggeling, S.W. Hell, Analytical description of STED microscopy performance, 

Opt. Exp., 18 (2010) 26417-26429. 

[14] J.R. Moffitt, C. Osseforth, J. Michaelis, Time-gating improves the spatial resolution of STED 

microscopy, Opt. Exp., 19 (2011) 4242-4254. 

[15] G. Vicidomini, G. Moneron, K.Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, 

S.W. Hell, Sharper low-power STED nanoscopy by time gating, Nat. Methods, 8 (2011) 571-573. 

[16] G. Vicidomini, A. Schonle, H. Ta, K.Y. Han, G. Moneron, C. Eggeling, S.W. Hell, STED 

nanoscopy with time-gated detection: theoretical and experimental aspects, PLoS One, 8 (2013) e54421. 

[17] M. Köllner, J. Wolfrum, How many photons are necessary for fluorescence-lifetime 

measurements?, Chem. Phys. Lett., 200 (1992) 199-204. 

[18] M. Prummer, C.G. Hubner, B. Sick, B. Hecht, A. Renn, U.P. Wild, Single-molecule identification 

by spectrally and time-resolved fluorescence detection, Anal. Chem., 72 (2000) 443-447. 

[19] M.A. Yaseen, S. Sakadzic, W. Wu, W. Becker, K.A. Kasischke, D.A. Boas, In vivo imaging of 

cerebral energy metabolism with two-photon fluorescence lifetime microscopy of NADH, Biomed. Opt. 

Exp., 4 (2013) 307-321. 

[20] J. Hotta, E. Fron, P. Dedecker, K.P. Janssen, C. Li, K. Mullen, B. Harke, J. Buckers, S.W. Hell, J. 

Hofkens, Spectroscopic rationale for efficient stimulated-emission depletion microscopy fluorophores, 

J. Am. Chem. Soc., 132 (2010) 5021-5023. 



www.manaraa.com

127 

 

 

[21] K.C. Holmes, I. Angert, F.J. Kull, W. Jahn, R.R. Schroder, Electron cryo-microscopy shows how 

strong binding of myosin to actin releases nucleotide, Nature, 425 (2003) 423-427. 

[22] D. Dibya, N. Arora, E.A. Smith, Noninvasive measurements of integrin microclustering under 

altered membrane cholesterol levels, Biophys. J., 99 (2010) 853-861. 

[23] J.E. Estes, L.A. Selden, L.C. Gershman, Mechanism of action of phalloidin on the polymerization 

of muscle actin, Biochemistry, 20 (1981) 708-712. 

[24] J. Vandekerckhove, A. Deboben, M. Nassal, T. Wieland, The phalloidin binding site of F-actin, 

EMBO J., 4 (1985) 2815-2818. 

[25] S.T. Hess, W.W. Webb, Focal volume optics and experimental artifacts in confocal fluorescence 

correlation spectroscopy, Biophys. J., 83 (2002) 2300-2317. 

[26] N. Marme, J.P. Knemeyer, M. Sauer, J. Wolfrum, Inter- and intramolecular fluorescence quenching 

of organic dyes by tryptophan, Bioconjug. Chem., 14 (2003) 1133-1139. 

[27] H. Chen, S.S. Ahsan, M.B. Santiago-Berrios, H.D. Abruna, W.W. Webb, Mechanisms of 

quenching of Alexa fluorophores by natural amino acids, J. Am. Chem. Soc., 132 (2010) 7244-7245. 

 

  



www.manaraa.com

128 

 

 

5.7. Figures and Tables 

 

Figure 5.1. Intensity images of actin fibers labeled with Alexa Fluor 594 phalloidin: (a) and (c) STED; 

(b) and (d) confocal images. The scale bar in the lower left corner of image a is the same for all images: 

500 nm. (e) Corresponding cross-sections (1, 2, 3 and 4) for STED (red solid circle) and confocal (black 

solid circle) imaging modes. The cross sections are fit to a Lorentzian function (solid line) to obtain the 

width of the fiber(s). Uncertainties in the cross section are the standard error in the fit. Three pixels 

highlighted with colored arrows in 1a represent locations where the fluorescence decay curves in Figure 

5.2 were obtained. 
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Figure 5.2. Representative fluorescence lifetime decay curves (circles) and corresponding exponential 

fits (solid lines) for three different pixels shown with corresponding color coded arrows in Figure 5.1a: 

(a) 64 channels; (b) 32 channels; (c) 16 channels. The average lifetime and adj. R
2
 values from the 

exponential fit are shown in each panel.   
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Figure 5.3. Fluorescence lifetime histograms with varying number of time channels for the image 

shown in Figure 5.1a (64 channels: red symbols, 32 channels: black symbols, 16 channels: light blue 

symbols). The fit (solid line) is Gaussian. Error bars in the lifetime histograms represent an average 

standard deviation of all measured fluorescence lifetimes in a specific bin.  
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Figure 5.4. Fluorescence lifetime histograms constructed from all 262,144 pixels in the images shown 

in Figure 5.1a (STED, red symbols) and 5.1b (confocal, black symbols) for 64 time channel decay 

curves. The fit (solid line) is Gaussian. Error bars in the lifetime histograms represent an average 

standard deviation of all measured fluorescence lifetimes in a specific bin.  
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Figure 5.5. Characterization of the sources of background in the STED image. (a) The background that 

results from incomplete depletion of the Alexa Fluor 594 phalloidin fluorescence at the periphery of the 

excitation beam (gray symbols) compared to the signal (black symbols) for the image shown in Figure 

5.1a. (b) Fluorescence lifetime histograms constructed for Alexa Fluor 594 phalloidin on a glass cover 

slip using the depletion and excitation laser (red symbol) or only the depletion laser (blue symbol). (c) 

The background from regions of the image shown in the Figure 5.1a (black symbols) or Figure 5.1b 

(gray symbols) where the cell is not located. All fits (solid line) are Gaussian. 
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Figure 5.6. Rectangular regions a, b, c, d, e, and f in the images correspond to the labeled fluorescence 

lifetime histograms in the STED (black symbol) and confocal (gray symbol) image using 64 time 

channel decay curves. The fit (solid line) is Gaussian. Error bars in the lifetime histograms represent an 

average standard deviation of all measured fluorescence lifetimes in a specific bin. 



www.manaraa.com

134 

 

 

CHAPTER 6 

GENERAL CONCLUSIONS AND FUTURE WORK  

The major goal of the work presented in this dissertation was to use fluorescence-based imaging 

techniques to study the lateral diffusion of the membrane proteins receptor for advanced glycation 

endproducts (RAGE) and integrins. The lateral diffusion of membrane protein is an important aspect 

that governs how protein functions in the cell membrane. Although RAGE signaling has been studied 

extensively, knowledge pertaining to RAGE lateral diffusion and the factors that affect RAGE diffusion 

in the cell membrane largely remain unknown. Fluorescence recovery after photobleaching (FRAP) was 

used to measure the diffusion of RAGE. FRAP experiments on red-fluorescent protein fused RAGE 

(RAGE-mRFP) indicated that the RAGE-mRFP follows Brownian motion in the cell membrane with a 

large mobile fraction at native GM07373 cellular conditions. The polymerization and depolymerization 

dynamics of the actin cytoskeleton play a role in increasing the RAGE mobile fraction, although only 

the depolymerizing cytochalasin-D treatment showed a RAGE-dependent change in p-ERK signaling.  

In Chapter 3, it was shown that the ligand (methylglyoxal modified-bovine serum albumin 

(MGO-BSA)) binding affinity affects RAGE lateral diffusion as measured with single particle tracking 

(SPT). The MGO-BSA binding to sRAGE (a soluble variant of RAGE) was observed to be dependent 

on the percent primary amine modification and the net negative surface charge on the ligand. MGO-

BSA incubation affected RAGE lateral diffusion, however, there was no direct correlation measured 

between ligand binding affinity, net negative surface charge on the ligand and RAGE diffusion 

properties. Ligand induced changes are not present when the cholesterol is depleted from the cell 

membrane, indicating a role for cholesterol in MGO-BSA-induced changes to RAGE diffusion.  

Using similar fluorescence-based techniques, the effect of highly conserved membrane proximal 

alpha-subunit cysteine (Cys
1368

) on the lateral diffusion properties of Drosophila integrins (αPS2CβPS) 

were measured. Replacing Cys
1368

 with Val
1368

 increased the mobile population of Val
1368

 integrins 
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compared to Cys
1368

 integrins as measured by FRAP and SPT. Tandem mass spectrometry and protein 

sequence analysis data suggested that Cys
1368

 harbors a redox or palmitoylation post-translational 

modification in integrins. The Cys
1368

 was proposed to be an important post-translational modification 

site that regulates the diffusion of αPS2CβPS integrins. This membrane proximal cysteine may play an 

important role in the diffusion of other alpha subunits that bear this conserved residue. 

Finally,  stimulated emission depletion microscopy was used to generate sub-diffraction images 

of the actin-cytoskeleton with a spatial resolution of ~40 nm in cultured cells. The quality of the 

fluorescence lifetime data obtained at sub-diffraction spatial resolution was evaluated. The photon count 

in the peak-channel was increased by time binning the 64 time channel data without compromising the 

spatial resolution. Detailed pixel-by-pixel analysis of fluorescence lifetime measurements with different 

photon counts in the peak channel showed that an average of 40 ± 30 photons in the peak channel and 

approximately 600 photons collected in total with a signal-to-noise ratio of 20 was enough to calculate 

reliable lifetimes. This is an important parameter since it governs the collection time required to obtain a 

meaningful fluorescence lifetime while reducing photodamage and photobleaching to biological 

samples and fluorophores. Although the probe volume in the STED imaging mode was tenfold smaller 

compared to the confocal mode, similar fluorescence lifetime distributions of the fluorophore attached 

to F-actin were obtained across the entire cultured cell when expected contributions from background 

were considered. The study indicates STED fluorescence lifetime imaging can be used to probe 

heterogeneity in the 40-nm regime in biological samples in aqueous environments. 

Future work could aim at using the SPT to interrogate RAGE diffusion in altered cellular 

conditions. For example, RAGE is known to interact with cytoplasmic protein Diaphanous-1 (Dia-1) 

through specific amino acids in the RAGE sequence. A site specific mutagenesis can be used to alter the 

amino acid sequence in the wild-type RAGE and SPT can be used to study the effect of disrupted 

interaction between RAGE and Dia-1. Also, the discrepancy observed in the ligand binding affinity and 
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RAGE diffusion can be further studied by using ligands with well-defined valancy. Further, the sub-

diffraction technique STED described in the Chapter 5 can be coupled with fluorescence correlation 

spectroscopy to study the diffusion of membrane protein labeled with an organic fluorophore molecule, 

at similar or better temporal resolution compared to SPT. 
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APPENDIX A 

SINGLE PARTICLE TRACKING WITH STEROL MODULATION REVEALS THE 

CHOLESTEROL-MEDIATED DIFFUSION PROPERTIES OF INTEGRIN RECEPTORS 

A paper published in Physical Biology as a research article 

(Phys. Biol., 11, 06001(2014). doi: 10.1088/1478-3975/11/6/066001) 

Neha Arora, Aleem Syed, Suzanne Sander and Emily A. Smith 

 

A.1. Abstract 

A combination of sterol modulation with cyclodextrins plus fluorescence microscopy revealed a 

biophysical mechanism behind cholesterol's influence on the diffusion of a ubiquitous class of receptors 

called integrins. Single particle tracking (SPT) measured heterogeneous diffusion of integrins bound to 

ligand-coated quantum dots, and fluorescence recovery after photobleaching (FRAP) measured the 

ensemble changes in integrin diffusion. A 25 ± 1% reduction of membrane cholesterol resulted in three 

significant changes to the diffusion of ligand-bound αPS2CβPS integrins as measured by SPT.  There 

was a 23% increase in ligand-bound mobile integrins; there was a statistically significant increase in the 

average diffusion coefficient inside zones of confined diffusion, and histograms of confined integrin 

trajectories showed an increased frequency in the range of 0.1-1 µm
2
/s and a decreased frequency in the 

0.01-0.1 µm
2
/s range. No statistical change was measured in the duration of confinement or the size of 

confined zones. Restoring the cholesterol-depleted cells with exogenous cholesterol or exogenous 

epicholesterol resulted in similar diffusion properties as measured prior to cholesterol depletion. 

Epicholesterol differs from cholesterol in the orientation of a single hydroxyl group. The ability of 

epicholesterol to substitute for cholesterol suggests a biophysical mechanism for cholesterol’s effect on 

integrin diffusion. Influences of bilayer thickness, viscosity and organization are discussed as possible 

explanations for the measured changes in integrin diffusion when the membrane cholesterol 

concentration is reduced. 
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A.2. Introduction 

As a major lipid component of the cell membrane, cholesterol plays a crucial role in membrane 

organization, dynamics and function [1]. Over the past several years it has been revealed that cholesterol 

is involved in the organization of the cell membrane [2-7]. Lipid nanodomains contain heterogeneous 

concentrations of lipids, proteins, and small molecules such as cholesterol compared to the bulk 

membrane. These nanodomains have been implicated as platforms for the co-localization of many 

membrane proteins necessary for transmembrane signaling [2, 8].  

Alterations in cell membrane cholesterol concentration are known to affect the function of a 

number of receptor proteins [9]. In this regard, the most extensively studied receptor family is G-protein 

coupled receptors (GPCRs) [10]. Depletion of cholesterol from the cell membrane reduces the ligand-

binding affinity of several GPCRs including oxytocin, cholecystokinin, galanin and serotonin [10-13]. 

An increase in the amount of membrane cholesterol favors the inactive conformation of the 

photoreceptor rhodopsin [14, 15]. Cholesterol is also necessary for the proper functioning of the 

nicotinic acetylcholine receptors [16].  

The present study explores the mechanism and heterogeneity of cholesterol-mediated diffusion 

of an important class of membrane protein receptors called integrins. Diffusion heterogeneity exists 

when all receptors are not diffusing at the same rate or exhibit different levels of confinement. Integrins 

are known to be involved in numerous fundamental cellular processes, including cell growth, survival, 

motility, adhesion and proliferation [17]. Integrins’ biological function including ligand binding, cell 

adhesion and signaling are affected by the cholesterol concentration in the membrane. Depletion of 

cholesterol from Jurkat cells is reported to decrease integrin mediated cell adhesion to the extra cellular 

matrix via lowering the ligand affinity [18]. Cholesterol modulates integrin function and clustering [19, 

20]. A recent study revealed the influence of cholesterol on adhesion and signaling properties of αvβ3 

and α5β1 integrins [21, 22]. Cholesterol has also been found to be essential for the formation of a 
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signaling protein complex comprising αvβ3 integrins [21]. Depleting cholesterol from the membrane led 

to the dissociation of this protein complex as revealed by the absence of co-immunoprecipitation of the 

proteins in the complex. In a study by Krauss et al., it was shown that integrin LFA-1 mediated cell 

adhesion was disrupted when the cholesterol content of the membrane was reduced [23]. Additionally, 

less integrin clustering was observed after 27% cholesterol depletion from the cell membrane [20]. 

Although it is evident that cholesterol plays an important role in modulating integrin function, details of 

the heterogeneous nature of and mechanism behind cholesterol-mediated integrin diffusion are not 

known. The diffusion of integrins is important to their function. Diffusion can affect the localization and 

clustering of integrins [24, 25]. An increase in cell adhesion is observed with an increase in integrin 

diffusion [12, 26]. Herein, cholesterol-dependent integrin diffusion properties are discussed and a 

mechanism of cholesterol-mediated changes in integrin function is proposed.  

One strategy to study the influence of cholesterol-dependent properties is to perform 

measurements at native, reduced and restored cholesterol or epicholesterol concentrations, as has been 

demonstrated for exocytosis in platelets [27]. Epicholesterol differs from cholesterol only in the 

orientation of the hydroxyl group at position 3 (Figure A.1 (a) and (b)). Physical properties of the cell 

membrane, including membrane fluidity and lipid domain formation, are unaffected by the substitution 

of cholesterol with epicholesterol in the membrane [28]. However, the difference in the structure of the 

two isomers can result in remarkable differences in their specific biochemical roles [29, 30]. Thus, the 

specificity of cholesterol in altering integrin diffusion and the mechanism behind cholesterol-mediated 

regulation of integrin diffusion can be determined by modulating the membrane sterol composition. 

Heterogeneous diffusion of integrin receptors in the cell membrane was measured using single particle 

tracking (SPT) with ligand-coated quantum dots or fluorescence recovery after photobleaching (FRAP) 

for ensemble diffusion measurements. Cholesterol modulation was performed using methyl-β-

cyclodextrin (MβCD). Cyclodextrins have been used extensively to modulate the cholesterol levels in 

cells due to their ability to act as efficient donors and acceptors of sterol [31]. Sterol and integrin 



www.manaraa.com

140 

 

 

quantification were performed with liquid chromatography-mass spectrometry using atmospheric 

pressure chemical ionization (LC/APCI-MS) and Western blotting, respectively. 

 

A.3. Materials Methods 

Cell Culture  

Drosophila S2 cells used in this study were transformed to express wild-type αPS2CβPS integrins under 

the regulation of the heat shock promoter. For FRAP experiments, αPS2CβPS integrins were tagged 

with a Venus fluorescent protein in the serine-rich loop, which has previously been used to insert 

epitope tags without any change to measureable function [32]. For Western blotting, the hemagglutinin 

epitope was added to the extracellular region of alpha subunit. The cells were cultured as previously 

published [33]. To induce integrin expression, cells were placed in a 36 °C water bath for 30 min and 

allowed to recover for 3 h at 22 °C before taking measurements.  

 

Cholesterol depletion, restoration and substitution  

After the heat shock and 3 h incubation, the cell suspension was centrifuged at approximately 600 × g 

for 3 min and the pellet was resuspended in serum-free M3 medium containing 2.5 mM or 5mM MβCD 

(Sigma-Aldrich, St. Louis, MO) solution for 30 min at 22 °C to deplete cholesterol [20].  For cholesterol 

restoration, cholesterol-depleted cells were incubated with a MβCD solution saturated with cholesterol 

(MβCD:cholesterol, molar ratio of 8:1) that was prepared as described previously [27] for 30 min at 22 

°C. Briefly, a small volume of cholesterol stock solution in chloroform was added to a glass vial and 

dried under a stream of nitrogen. The dried samples were then resuspended in 2.5 mM MβCD or 5mM 

MβCD, vortexed and sonicated to allow mixing, and incubated overnight with shaking at 200 rpm and 

37 °C. The solution was filtered using a 0.2 μm filter immediately prior to use.  

 To substitute cholesterol with epicholesterol, cholesterol-depleted cells were exposed to a saturated 

MβCD:epicholesterol solution for 30 min at 22 °C. MβCD:epicholesterol was prepared using a similar 
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protocol as used to prepare MβCD:cholesterol. Before lipid extraction, diffusion measurements or no 

measurable phenotype changes in the cells after any of the above-mentioned treatments. 

 

Extraction of lipids and LC/APCI-MS quantification of cholesterol and epicholesterol  

After the heat shock and 3 h recovery, membrane and total cellular lipids were extracted as described 

previously [20, 34] with the following change: the lipids were resuspended in methylene chloride for 

subsequent LC/APCI-MS measurements. 

 Cholesterol and epicholesterol were quantified using an Agilent 6540 Ultra-High-Definition (UHD) 

Accurate-Mass Quadrupole Time-of-Flight (Q-TOF) liquid chromatography mass spectrometry (LC-

MS) system. Analyses were performed on Agilent XDB C18, 4.6 x 150 mm, 1.8 µm column coupled 

with Agilent QTOF 6540 mass spectrometer equipped with APCI ion source. A mixture of methanol 

and water (100:0.5 v/v) at 1 ml/min flow rate was used as a mobile phase. The sample injection volume 

was 1 µL. All data were acquired in the positive ion mode. Commercial standards of cholesterol (Sigma, 

St. Louis, MO) and epicholesterol (Stereloids, Newport, RI) were used to assign the peaks in the 

chromatograms and stigmasterol was used as an internal standard (Figure A.1 (c)). The measured 

resolution between the cholesterol and epicholesterol peaks was 1.2 for both the standard solutions and 

the lipid extract from the cells (Figure A.1 (c) and (d)). For quantification purposes, an external 

calibration curve was set up every day. Peaks were extracted and integrated using Agilent Masshunter 

software. The m/z values of 369.35 and 383.34 were used for quantification of both cholesterol and 

epicholesterol. All measurements were duplicated. 

  

Preparation of ligand-coated quantum dots and labeling  

Quantum dots (QDs) measuring 16 nm in diameter were obtained from Life Technologies (Carlsbad, 

CA, USA). The size of the ligand-coated quantum dots used in this study is comparable to that of 

integrin, therefore integrin clusters are not being formed as a result of multivalent binding to a ligand-
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coated quantum dot. The conjugation of positively charged QDs with net-negatively charged RBB-

Tiggrin ligand was achieved as described previously [35]. For labeling the integrins with ligand-coated 

quantum dots (hereafter QD-RBB-Tiggrin), cells that had been heat shocked and allowed to recover for 

3 h were centrifuged at approximately 600 × g for 3 min and the resulting pellet was resuspended in 

serum-free medium to adjust the final concentration to 5 × 10
5 

cells/mL. Cells were then spread on 

RBB-Tiggrin coated glass slides for 1 h at room temperature [33]. Media was removed and cells were 

incubated with a 50 µL suspension of 0.1 nM QD-RBB tiggrin for 5 min.  Finally, the cells were rinsed 

with BES Tyrodes buffer for imaging. The binding specificity of QD-RBB-Tiggrin to integrins was 

examined using untransformed S2 cells that have no detectable endogenous integrin expression. 

Nonspecific binding was negligible, approximately 1 %. 

  

Imaging  

Imaging of the cells was performed by fluorescence microscopy at room temperature. A Nikon Eclipse 

TE2000U inverted microscope (Melville, NY, USA) was equipped with an oil-immersion objective 

(100×, NA=1.49) and specific filter sets were used for excitation and emission of QDs and YFP for SPT 

and FRAP experiments, respectively.  A mercury lamp was used for illumination and all images were 

captured using a PhotonMAX 512 EMCCD camera (Princeton Instrument, Trenton, NJ, USA).  

Winview software (Photometrics, Tucson, AZ, USA) allowed the recording of images as a function of 

time. Data collection was completed within 1 h after adding BES buffer to the cells. 

 

Single Particle Tracking (SPT)  

Images were recorded at 25 frames/second for a total of 30 seconds. Images were processed using 

Image J version 1.45 s and the ImageJ plugin Particle Tracker version 1.2. At least 90 ligand-coated 

quantum dots from at least 15 cells were used to generate trajectories as described previously [35]. The 

number of trajectories collected generates reliable average diffusion coefficients as reported by Saxton 
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[36]. Single ligand-coated quantum dots were identified by their on-off blinking behavior and only 

trajectories generated from single ligand-coated quantum dots were analyzed. Trajectories consisting of 

less than 100 frames were excluded from the analysis.  

 Trajectory analysis was performed using a MATLAB-implemented application with graphical 

user interface that is based on the established algorithms of Simson et al. and Melihac et al [37-39]. 

Trajectories of single ligand-coated quantum dots were analyzed for the presence of confinement zones. 

Confinement zones are regions where a diffusing particle remains for a time duration considerably 

longer than a Brownian diffusant would stay in an equally sized region. A confinement index, L, was 

calculated for each trajectory as described previously [37]. Trajectories were categorized into two 

different modes of diffusion: Brownian diffusion with no confined zones, and confined diffusion with 

one or more confined zones. An L > 3.16 for a duration > 1.1 s had a likelihood of more than 99.9 % to 

reflect confined diffusion. For each trajectory, characteristic and instantaneous diffusion coefficients 

were calculated by analyzing the plot of mean square displacement (MSD) vs time according to 

Michalet et al. [40]. Trajectories with confined diffusion were further analyzed to determine the size of 

the confinement, the duration of the confinement and the diffusion coefficients inside the confined 

zones.  

 

Fluorescence recovery after photobleaching (FRAP)  

FRAP experiments were carried out on S2 cells transformed to express integrins attached with Venus 

fluorescent proteins. The 488-nm line of an argon ion laser was used for photobleaching, and the 

recovery of fluorescence was monitored using mercury lamp excitation. Images were collected using a 

500/20-nm excitation and a 535/30-nm emission filter. The exposure time for each image was 0.35 s, 

and images were collected every 0.40 s. The bleaching time was 0.35 s and the bleached area was 41 

µm
2
.  Fluorescence images were analyzed as previously described [24] by fitting them to models based 

on Eq. 1 [25] with an in-house-developed Igor Pro macro (version 4.0). 
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𝐹0+𝐹∞(

𝑡

𝜏
)

𝛼

1+(
𝑡

𝜏
)

𝛼

 (1) 

The fluorescence at time t is F(t), F0 is the initial fluorescence intensity after photobleaching; Fin is the 

fluorescence intensity at an infinite recovery time; τ is the time for 50% of the fluorescence to recover, 

and α is the time exponent providing a measure of how much diffusion is confined. The most 

appropriate model was determined by comparing the reduced chi
2
 values obtained for each model. Most 

FRAP curves (Figure SA.1) were best fit to a model for time-dependent diffusion (α <1) with an 

immobile fraction (Fin < 1). Values obtained from the fit of the fluorescence recovery curve were used 

to calculate the diffusion coefficient, D(t) (Eq. 2). 

𝐷(𝑡) =
𝜔2

4(𝜏)𝛼(𝑡)(𝛼−1)
                (2)

 

where ω is the radius of the focused Gaussian laser beam [41].  

 

A.4. Results and Discussion 

Modulation of cellular cholesterol concentration with methyl-β-cyclodextrin  

MβCD was used to alter the sterol content in S2 cells transformed to express αPS2CβPS integrins. The 

total cellular and membrane cholesterol concentrations as measured by liquid chromatography-mass 

spectrometry in untreated, cholesterol-depleted and cholesterol-restored cells are summarized in Figure 

A.2. Membrane cholesterol is the most relevant fraction for this study since it can influence integrin 

diffusion in the cell membrane (Figure A.2 (a)).  Total cellular (intracellular plus membrane) cholesterol 

concentration was also measured to provide information about the efficacy of the sterol depletion and 

restoration (Figure A.2 (b)). Total cellular cholesterol was depleted by 45 ± 5 % with 2.5 mM MβCD 

treatment. The percent decrease in membrane cholesterol (25 ± 1 %) was lower than the measured 

decrease for total cellular cholesterol. This is consistent with a previous study supporting the notion that 
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the distribution of cholesterol into intracellular and cell membrane pools is affected by cholesterol 

depletion [20]. Similar cholesterol depletion levels were achieved using 5 mM MβCD, indicating 2.5 

mM MβCD is sufficient for subsequent experiments.  

 Exposing the previously cholesterol-depleted cells to 2.5 mM MβCD preloaded with cholesterol 

(MβCD:cholesterol) restores the total cellular and membrane cholesterol levels to 126 ± 12 %  and 82 ± 

13 % of the native levels, respectively. A complete restoration of membrane cholesterol was not 

achieved despite a higher total cellular cholesterol concentration. Similar to what was found with the 

depletion step, 5 mM MβCD:cholesterol produced statistically similar results as 2.5 mM 

MβCD:cholesterol, therefore, 2.5 mM MβCD:cholesterol was used for subsequent restoration 

experiments.  

 

Classification of integrin diffusion by SPT: cholesterol depletion increases the integrin mobile fraction 

Integrin diffusion was analyzed for 90 to 100 trajectories and categorized as immobile, or mobile with 

Brownian or confined diffusion in each cell population: untreated, cholesterol-depleted and cholesterol-

restored. A ligand-coated quantum dot, and therefore a trajectory, was considered to be immobile in a 

given region if the median of its instantaneous diffusion coefficient was below 0.001 μm
2 

/s. All mobile 

trajectories collected from the three cell populations are shown in Figure SA.2. The most obvious 

difference among the three cell populations is the varying number of mobile trajectories. In untreated 

cells with a native cholesterol concentration, 74% of ligand-bound integrins were mobile with 36 mobile 

trajectories exhibiting confined diffusion and 38 mobile trajectories exhibiting Brownian diffusion 

(Table A.1). Immobile and confined trajectories may represent the population of integrins in confined 

membrane regions and/or interacting with confined cytoskeletal proteins.  

After cholesterol depletion, the ligand-bound integrin mobile fraction increased to 97% (Table 

A.1), which indicates cholesterol is directly or indirectly the main causes of ligand-bound integrin 

immobilization at native cholesterol concentrations. There is a small increase in the number of 
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trajectories exhibiting Brownian diffusion after cholesterol depletion; however, the increase in the 

mobile fraction is primarily associated with a larger number of integrins diffusing with confined zones. 

An increase in the size of confined zones or the time integrins spend in confined zones could explain 

this observation since both would increase the probability of a confined event being detected during the 

observation time. However, there isn’t a statistically significant change in either of these parameters 

after cholesterol depletion (Table A.1 and Figure A.3). This suggests a higher fraction of diffusing 

integrins partitions into confined zones after cholesterol depletion.  

After cholesterol restoration (Table A.1) the mobile ligand-bound integrin fraction decreased to 

82% and the number of trajectories exhibiting confined diffusion decreased to 50. These values are 

higher than what was measured in the untreated cell population (i.e., 74% and 38). This may be the 

result of incomplete restoration of membrane cholesterol upon treatment with MβCD:cholesterol 

(Figure A.2), the result of other changes that may occur in the membrane, for example other lipids may 

be affected by MβCD, or there may be a time dependence to the restoration of some diffusion 

properties. The percentage of trajectories exhibiting Brownian diffusion decreased to 32. 

In contrast to SPT, the ensemble FRAP measurements showed a 25% decrease in the mobile 

integrin fraction after cholesterol depletion and a 35% increase after cholesterol restoration (Table A.2). 

The main reason for the difference is understood by considering each pool of integrin measured in the 

experiment. In FRAP, all ligand-bound and ligand-unbound integrins are labeled with fluorescent 

protein, and all integrins within the probed membrane region of a few microns square contribute to the 

signal. Whereas in SPT only integrin bound to ligand-coated quantum dots is measured. Arnold et al. 

have shown that 300 ligand-bound integrins per µm
2
 is the minimum density required for cells to spread 

[42]; whereas if only size constraints are considered, a maximum of several thousand integrins can pack 

in the same area. It could be argued that the quantum dot affects the diffusion measurements; yet the 

same diffusion properties have been previously measured by FRAP and SPT under some experimental 

conditions [35]. A more complete picture of how the integrins are moving in the cell membrane is 
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obtained with a combination of FRAP and SPT measurements. The integrins bound to ligand-coated 

quantum dots are more mobile after cholesterol depletion, but the bulk integrins are less mobile after 

cholesterol depletion. 

 

Cholesterol depletion influences integrin diffusion coefficient in the confined zones 

Plots of confinement index and instantaneous diffusion coefficient for a trajectory exhibiting only 

Brownian diffusion and a trajectory with one confined zone (red circle) are shown in Figure A.4.  In 

general, the instantaneous diffusion coefficient varies significantly at different times in the trajectory 

and confinement zones are associated with lower instantaneous diffusion coefficients. For trajectories 

with confined zones, average diffusion coefficients were calculated inside and outside the confinement 

zones (Table A.1). After cholesterol depletion, the average diffusion coefficient in the confined zones 

showed a statistically significant increase and there was no significant change in the diffusion 

coefficient outside the confinement zones. The distribution of measured diffusion coefficients (Figure 

A.5) provides more information than the average values reported in Table A.1 due to the heterogeneity 

in the single receptor data. After cholesterol depletion, there are two significant changes observed in the 

distribution of diffusion coefficients inside the confined zones when considering differences of 5% or 

more. There is a 11% decrease in the integrin population with a diffusion coefficient in the range of 

0.01-0.1 µm
2
/s, and a 8% increase in the population in the range 0.1-1 µm

2
/s after cholesterol depletion. 

 To confirm the measured diffusion coefficient changes were attributable to cholesterol depletion, 

cholesterol was restored in a previously cholesterol-depleted cell population. After cholesterol 

restoration, the average diffusion coefficient within the confined zones returns to the value measured for 

untreated cells (Table A.1). Similarly, the histogram of diffusion coefficients within confined zones 

after cholesterol restoration has no changes greater than 5% compared to the histogram recorded for 

cells with a native cholesterol concentration (Figure A.5). This indicates that integrin diffusion in the 
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confined zones is cholesterol-dependent; whereas outside the zones the diffusion is cholesterol-

independent as measured by SPT.  

There is a statistically significant increase in the ensemble integrin diffusion coefficient 

measured by FRAP after cholesterol depletion (Table A.2). The diffusion coefficient measured by 

FRAP after cholesterol restoration decreases to a value near what was measured at native cholesterol 

concentrations, indicating the increase in the diffusion coefficient after cholesterol depletion is 

cholesterol-mediated and not the result of another change to the membrane composition. 

 

Mechanism for cholesterol-mediated changes to integrin diffusion  

The measured differences in integrin diffusion properties after cholesterol depletion could be due to: (i) 

cholesterol affecting the physical properties of the membrane such as its fluidity or (ii) cholesterol 

interacting with integrin or another membrane component that influences integrin diffusion. It is also 

possible that a combination of both occur simultaneously. Any direct interaction with cholesterol is 

likely to be stereoselective; whereas cholesterol’s influence on the biophysical properties of the 

membrane is not. To elucidate the mechanism by which cholesterol affects integrin diffusion, 

cholesterol in the cell membrane was partially substituted with its stereoisomer epicholesterol. If similar 

diffusion properties are measured after cholesterol restoration or partial epicholesterol substitution, it 

can be concluded that cholesterol regulates integrin diffusion by changing the physical properties of the 

membrane, otherwise specific biochemical interactions may also be involved.  

MβCD saturated with epicholesterol (MβCD:epicholesterol) was used to partially substitute 

cholesterol with epicholesterol in the cell membrane. The treatment resulted in a 47 ± 1 % substitution 

of cholesterol by epicholesterol in the cell membrane (Figure A.2), and a nearly ideal restoration of 

membrane sterol concentration. This is consistent with previous studies that showed ~50% substitution 

of epicholesterol in the cell membrane irrespective of the concentration of MβCD used [29, 43, 44]. The 

total cellular sterol concentration was not restored after MβCD:epicholesterol treatment (Figure A.2 
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(b)), which may be the result of altered membrane internalization. In order to measure whether sterol 

modulation affected integrin concentration, Western blot analyses were performed using cells with 

native, depleted, restored or substituted sterol content (Figure A.6). There was no statistically significant 

change in integrin concentration among any of the cell populations, indicating measured differences in 

diffusion properties are not the result of changes in integrin concentration. 

 Epicholesterol generated statistically similar integrin diffusion properties as were measured after 

cholesterol restoration.  As measured by SPT there was no statistically significant difference in the 

average diffusion coefficient of mobile integrins inside or outside the confined zones after cholesterol 

restoration and partial epicholesterol substitution (Table A.1). The ensemble diffusion coefficient 

measured by FRAP was also statistically similar (Table A.2). Finally, the fraction of mobile integrins 

exhibiting confined diffusion is also similar after cholesterol restoration and partial epicholesterol 

substitution, and there is a 82% mobile fraction in both cell populations (Table A.1).   

Since epicholesterol substitution restores changes in the diffusion coefficients measured after 

cholesterol depletion, there is a biophysical mechanism behind cholesterol's influence on integrin 

diffusion. The specific biophysical mechanism may be changes in one or more of the following: bilayer 

viscosity, thickness, or organization. Additional mechanisms, for example there may be an effect of 

cholesterol on integrin's rotational diffusion, can't be determined with these experiments. Reports vary 

on cholesterol's effect of on membrane thickness.  When cholesterol is added to a synthetic bilayer in 

the absence of proteins there is a 4 Ǻ increase in bilayer thickness [45-49]. According to the Saffman 

and Delbrück membrane diffusion model, this would change the diffusion coefficient by no more than 6 

%. This could not be the complete explanation for the 3-fold increase in the average diffusion 

coefficient inside confined zones. In an artificial bilayer or cell membrane, a 2-fold increase in 

membrane viscosity was measured after the addition of 30 mole percent cholesterol [50, 51]. According 

to the Saffman and Delbrück model this results in a 2-fold change in receptor diffusion [52]. Finally, 

modifications in the membrane organization along with changes in integrins’ clustering and interaction 
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with other membrane proteins are likely to contribute to the measured changes in integrin diffusion 

upon cholesterol depletion. Cholesterol is necessary for the formation of α4β1, α5β1 and αPS2CβPS 

integrins clusters in the cell membrane of various cell types [18, 20, 22]. Association and signaling of 

αVβ3 integrin, integrin associated protein and G protein complex is cholesterol dependent in C32 human 

melanoma cells [21]. 

 

A.5. Conclusions 

Integrins in the cell membrane exhibit a biophysical-dependent change in integrin diffusion upon 

cholesterol-depletion. Partial substituting of cholesterol with epicholesterol restored the depletion-

induced changes to integrin diffusion. Epicholesterol is known to mimic the effects of cholesterol on 

membrane physical properties. Hence, the changes to integrin diffusion that are measured after 

cholesterol depletion are likely due to the overall changes in the membrane and not a result of specific 

biochemical interactions of cholesterol involving the β-hydroxy group. 
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A.7. Figures and Tables 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure A.1. Structure of (a) cholesterol and its stereoisomer (b) epicholesterol. (c) The chromatogram 

of a standard mixture of the two isomers and stigmasterol (internal standard) separated and detected by 

LC/APCI-MS. (d) The chromatogram of the lipids extracted from untreated cells (gray) and partial 

epicholesterol-substituted cells (black). Peak 1: epicholesterol, Peak 2: cholesterol, Peak 3: stigmasterol  
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Figure A.2.  (a) Membrane and (b) total cellular cholesterol concentration as measured by LC/APCI-

MS in S2 cells expressing αPS2CβPS integrins in untreated cells, cells exposed to 2.5 or 5 mM MβCD 

to deplete cholesterol concentrations (depletion), in cells first depleted of cholesterol using empty 2.5 or 

5 mM MβCD and then exposed to 2.5 or 5 mM MβCD:cholesterol (restoration) and in cells first 

depleted of cholesterol using empty 2.5 or 5 mM MβCD and then exposed to 2.5 or 5 mM 

MβCD:epicholesterol (substitution).  The dark gray bars represent cholesterol and the light gray bars 

represent epicholesterol. Error bars represent one standard deviation from duplicate measurements. * p-

value < 0.05 compared to the no treatment data. 
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Figure A.3. Frequency histograms of (a-d) the size of confined zones and (e-h) duration in confined 

zones. The results were normalized to the total number of mobile trajectories exhibiting confined zones 

(Table A.1).  
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Figure A.4. Plots showing (a) a trajectory with a single confined zone depicted by a red circle (b) a 

Brownian trajectory with no confined zones. Panels (c-d) show instantaneous diffusion coefficient and 

confinement index plots. Dashed blue line indicates the critical threshold value of confinement index, L 

[37] . 
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Figure A.5. Histograms of diffusion coefficients inside the confined zone measured for each confined 

integrin trajectory in: untreated cells, cholesterol-depleted cells, cholesterol-restored cells, and partial 

epicholesterol-substituted cells. Histograms were normalized with respect to the number of mobile 

trajectories and the total number of trajectories in each data set; the number of mobile trajectories in 

each data set is shown in Table A.1.  
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Figure A.6. Western blot of the HA-tagged αPS2 integrin subunit. The αPS2 subunit has been shown to 

produce two bands at 180 kD and 165 kD [53]. 1: no treatment, 2: 2.5 mM MβCD (depletion), 3: 5 mM 

MβCD (depletion), 4: 2.5 mM MβCD followed by 2.5 mM MβCD:cholesterol (restoration) and 5: 5 

mM MβCD followed by 5 mM MβCD:cholesterol (restoration), 6: 2.5 mM MβCD followed by 2.5 mM 

MβCD:epicholesterol (substitution) and 7: 5 mM MβCD followed by 5 mM MβCD:epicholesterol 

(substitution). Actin (43 kD) was used as a loading control. 

  

1 2 3 4 5 6 7
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Table  A.1. Diffusion parameters obtained from SPT analysis of 100 integrin trajectories.
a
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a
  p-values were obtained from Welch’s t-test.*statistically significant at the 95% confidence level. 

 

  

 No treatment Cholesterol 

depletion 

Cholesterol 

restoration 

Partial 

epicholesterol 

substitution 

Mobile trajectories 

(%)
 
 

74 97 82 82 

Brownian Trajectories 

Trajectories with 

Brownian diffusion 

(#)
 
 

36 40 32 32 

Diffusion coefficient 

(µm
2
/sec)

 
 

0.2  ± 0.3 
0.2  ± 0.3 

(p=0.9) 

0.1 ± 0.1 

      (p=0.1) 

0.1 ± 0.1 

             (p=0.3) 

Confined trajectories 

Trajectories with  

confined diffusion (#) 
 
 

38 57 50 51 

Diffusion coefficient 

inside the confined 

zones (µm
2
/sec) 

0.01 ± 0.03 
0.03 ± 0.06 

(p=0.03*) 

0.01 ± 0.03 

(p=0.5) 

0.02 ±  0.04 

(p=0.3) 

Diffusion coefficient 

outside the confined 

zones (µm
2
/sec) 

0.1 ± 0.3 
0.1 ± 0.1 

(p=0.6) 

0.1 ± 0.1 

 (p=0.4) 

0.1 ± 0.1 

 (p=0.3) 

Diameter of confined 

 zones (μm)
 
 

0.2 ± 0.2 
0.4  ± 0.4 

(p=0.09) 

0.2 ± 0.2 

(p=0.8) 

0.2 ± 0.2 

 (p=0.5) 

Duration of confined  

zones (s)
 
 

3 ± 2 
3 ±  3 

(p=0.9) 

2 ± 1 

(p=0.09) 

2 ± 1  

(p=0.3) 
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   Table A.2. Integrin mobile fractions and diffusion coefficients measured by FRAP.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Treatments Mobile 

Fraction 

Diffusion 

Coefficient 

at 1s 

(µm
2
/s) 

Diffusion 

Coefficient 

at 50s 

(µm
2
/s ) 

No treatment 0.77 ± 0.02 0.84 ± 0.07 0.50 ± 0.05 

Cholesterol depletion 0.58 ± 0.02 1.8 ± 0.1 2.5 ± 0.5 

Cholesterol restoration 0.90 ± 0.05 0.8  ± 0.1 0.26 ± 0.04 

Partial epicholesterol 

substitution 

0.74 ± 0.03 0.9 ± 0.1 0.31 ± 0.04 
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A.8. Supporting Information for Appendix A 

Western blot analysis 

 After the heat shock and 3 h recovery, integrin expressing cells were subjected to cholesterol depletion, 

restoration, or substitution as described above. Cells were washed twice with cold 1 × PBS, pH 6.5 

(0.13 M NaCl, 7 mM Na2HPO4, 3 mM NaH2PO4) at 4 °C and lysed using RIPA buffer (150 mM 

sodium chloride, 1.0% NP-40 detergent, 0.5% sodium deoxycholate, 0.1% SDS, 50 mM Tris, pH 8.0) 

containing Halt™ Protease Inhibitor Cocktail (Thermo Scientific, Rockford, IL). Proteins were 

chloroform/methanol precipitated, redissolved in sodium dodecyl sulfate (SDS) buffer (4% SDS, 50 

mM Tris, 5 mM EDTA, pH 7.4) and separated by SDS polyacrylamide gel electrophoresis (PAGE). 

After electrophoresis, the proteins were electro-transferred to Immun-Blot
®
 LF PVDF membrane (Bio-

Rad, Hercules, CA) according to standard protocols. Following protein transfer, the membrane was 

probed following the manufacturer's protocol (Bio-Rad). Antibodies used for blotting were: anti-HA 

rabbit polyclonal (primary, 1:1000, Invitrogen, Oregon) and Alexa Fluor 647-conjugated goat anti-

rabbit IgG (secondary, 1:10,000, Invitrogen, Oregon). The antibody labeling was detected and analyzed 

by fluorescent scanning on a Typhoon 9410 (GE Healthcare, Waukesha, WI). As a loading control, the 

membrane was stripped and reprobed with an antibody against the cytoplasmic protein actin (Santa Cruz 

Biotechnology, Santa Cruz, CA). The normalized intensity of the 180 kD/43 kD bands was measured in 

Image J version 1.45 s. 
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Figure SA.1. Average fluorescence recovery after photobleaching (FRAP) curves from 10 replicate 

measurements (circles) of S2 cells expressing αPS2CβPS-Venus integrins (blue) at native  cholesterol 

concentration; (black) reduced cholesterol concentration; (green) restored cholesterol concentration; 

(red) restored epicholesterol concentration. The data are fit (solid lines following the same color scheme 

previously described) to a model for time-dependent diffusion with an immobile fraction. Curves have 

been normalized to the pre-photobleach intensity. 
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Figure S.A.2. Trajectories of all mobile integrins obtained from SPT measurements showing diffusion 

of αPS2βPS integrins in: (a) untreated cells, (b) cholesterol-depleted cells, (c) cholesterol-restored cells, 

(d) partial epicholesterol-substituted cells. The absolute position of trajectories in the graph has no 

meaning since some trajectories were moved to prevent overlap, and the trajectories were collected from 

several cells with different shapes and locations on the microscope slide. 
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APPENDIX B 

SELF-IMMOLATIVE PHTHALATE ESTERS SENSITIVE TO HYDROGEN PEROXIDE AND 

LIGHT 

“Reproduced with permission from [Mahoney, K. M.; Goswami, P. P.; Syed, A.; Kolker, P.; Shannan, 

B.; Smith, E. A.; Winter, A. H., The Journal of Organic Chemistry, 79, 11740-11743 (2014).] Copyright 

[2014] American Chemical Society.” 

 

Kaitlyn M. Mahoney, Pratik P. Goswami, Aleem Syed, Patrick Kolker, Brian Shannan, Emily A. Smith 

and Arthur H. Winter 

 

B.1. Abstract 

Self-immolative aryl phthalate esters are conjugated with cleavable masking groups sensitive to light 

and hydrogen peroxide. The phthalate linker releases the fluorescent dye 7-hydroxycoumarin upon 

exposure to light or H2O2, respectively, leading to an increase in fluorescence. The light-sensitive aryl 

phthalate ester is demonstrated as a pro-fluorophore in cultured S2 cells. 

 

B.2. Introduction 

Self-immolative linkers have proven to be useful for connecting a cleavable masking molecule to an 

output cargo molecule [1-4].  Upon exposure to an input stimulus that cleaves the mask, self-immolative 

linkers release their cargo. Self-immolative linkers have found applications in enzyme activated pro-

drugs [5-12], chemical sensors [2], traceless linkers [13-15], biological probes [16-18], and degradable 

polymers [19-21]. Released chemical cargos are often biomolecules, drugs, or reporters such as 

fluorescent dyes. Ideally, self-immolative linkers should be simple in design, stable, compatible with 

water, and transformed into a benign byproduct upon release of the output cargo. Additionally, they 

should be easy to conjugate, readily adaptable to a variety of inputs and outputs, and quickly release the 

output cargo. A drawback to some self-immolative linkers is that cargo release rates can be slow 
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(minutes to hours), leading to loss of temporal resolution. Our group has recently reported aryl phthalate 

esters as self-immolative linkers [3]. In this previous work, we demonstrated that a fluoride-sensitive 

masking group could release cargo phenols and phenolic-based fluorescent dyes. Phthalate self-

immolative linkers exploit the rapid hydrolysis of esters with adjacent catalytic carboxylate moieties, a 

classic case of neighboring group participation [22-24] (phenyl hydrogen phthalate releases phenol in 

<5 s in neutral water [3]). These intra-molecularly catalyzed reactions involve neighboring group attack 

by the free carboxylate upon the adjacent ester to generate a transient anhydride that undergoes 

spontaneous hydrolysis to yield the diacid. Here, we demonstrate that phthalate esters masked with 

light- and peroxide-sensitive groups can release a coumarin dye upon exposure to light or peroxide 

(Scheme B.1). Peroxide is an important biological signaling molecule, whereas light-releasable 

fluorescent dyes (pro-fluorophores) have found application in monitoring dynamic events in real time 

[25-29] as well as recording images with subdiffraction resolution at the nanometer level [30-33].  

 

B.3. Results and Discussion 

Both compound 1 and 2 were synthesized by the addition of the trigger molecule to phthalic anhydride 

followed by the addition of 7-hydroxycoumarin by either a DCC/DMAP or EDC/DMAP coupling. 

Compounds 1 and 2 were exposed to UV light and hydrogen peroxide, respectively. The reactions were 

monitored using fluorescence and 
1
H NMR spectroscopy. The titration of 1 resulted in an 18-fold 

increase in fluorescence intensity and 2 showed an 8-fold increase as a result of releasing the free 

fluorescent dyes. 

The titrations of 1 and 2 were followed by fluorescence spectroscopy (Figure B.1). To aid with 

solubility, experiments with 1 were carried out by first dissolving the compound in DMF and exposing 

the resulting solution to 350-nm light, a small aliquot (7 μL) of the solution was then injected into 

buffered water (3.0 mL, pH 7.0, 1 mM phosphate buffer) and fluorescence was followed as a function of 

time. Experiments for 2 were carried out by first dissolving the compound in DMF and titrating with 
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hydrogen peroxide. This procedure was followed by injection of a small aliquot of the DMF/H2O2 

solutions into buffered water for the fluorescence analysis. 

Compound 1 was stable in water/DMF mixtures in the absence of light for at least one day at 

room temperature (see the Supporting Information for details). Compound 2 did show some instability, 

as seen by a small increase in fluorescence after a 16-h period in a water/DMF mixture in the absence of 

hydrogen peroxide (see the Supporting Information for spectra). Additionally, it is noteworthy that this 

structure 2 is quite unstable under the seemingly mild conditions required to synthesize it (e.g. 

DCC/DMAP ester coupling), possibly the result of the boronate ester under the reaction conditions 

catalyzing a spontaneous ester hydrolysis (2 is stable as a solid or dissolved in a solution lacking 

hydrogen peroxide, however). Additionally, NMR product studies of 1 after exposure to light indicate 

that the organic products are the expected free 7-hydroxycoumarin as well as phthalic acid. The toxicity 

of phthalic acid has been studied due to its industrial use in the synthesis of phthalate plastics and esters; 

it has not been found to be very toxic in mice (LD50 (mouse) is 2.53 g/kg). 

Because 1 showed the largest increase in fluorescence intensity and the greatest stability during 

the titration studies, we chose to use it for cellular experiments. Compound 1 was incubated with 

Drosophila S2 cells, and dye release was monitored using fluorescence microscopy. See Figure B.2. 

The Drosophila S2 cells were loaded with 1 and subjected to continuous irradiation with 335-nm 

light. Fluorescence images were collected every 500 ms for a total of 33 min (Figure B.2). Fluorescence 

emission was observed at 450 nm. Fluorescence intensity for Figure B.2 (i−iii) was taken from the 

periphery of the cell where the concentration of 1 was highest. As shown in Figure B.2E−H, at the 

beginning of the experiment there was minimal fluorescence; however, after exposure to light a gradual 

increase in fluorescence is seen for up to 33 min. The initial fluorescence seen at time zero can be 

attributed to cellular auto fluorescence, which undergoes initial bleaching prior to significant release of 

the free coumarin dye. Control studies were performed to make sure the fluorescence was due to the 

controlled release of 7-hydroxycoumarin by irradiation. Parts A−D of Figure B.2 show that there is a 
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minimal change in fluorescence of cells when they are irradiated without being loaded with 1. Another 

control study (Figure B.2 (ii)) was performed with cells incubated with 1 but not exposed to irradiation. 

There was an initial fluorescence signal due to cellular auto fluorescence; however, a decrease in 

fluorescence signal is seen, eventually leveling off to intensity similar to that of the unloaded cells, 

indicating that the 1 does not release the dye in the absence of irradiation. 

The cytotoxicity of 1 in the cells was determined by incubating the cells (1 × 10
6 

cells/mL) with 

different dilutions (100, 50, 25, 12.5, 6.25, and 3.125 μM) of 1 in phosphate buffer saline (PBS, pH = 

7.1) for 1 h. At a compound concentration of 50 μM, 83% of the cells remained viable after 1 h, and this 

concentration was used in all fluorescence imaging cell studies.  

 

B.4. Conclusions 

We have shown that aryl phthalate self-immolative linkers are easily conjugated with the light-sensitive 

2-nitrobenzyl alcohol group and the hydrogen peroxide sensitive group 4-(hydroxymethyl) 

phenylboronic acid pinacol peroxide sensor. Compound 1 is of interest because it is able to deliver 

cargo in a temporally and spatially controlled manner using irradiation. Release of caged 7-

hydroxycoumarin occurs upon irradiation within S2 cells. We note finally that the known fast rates of 

hydrolysis of phthalate self-immolative linkers may make these structures good candidates for domino 

self-immolative linkers [34-38], wherein a single input reaction results in the spontaneous release of 

numerous cargo molecules. Current domino self-immolative linkers tend to have slow kinetics of 

release. A recent method to synthesize aryl mellitic acid esters [39] may enable these structures to be 

used within fast releasing domino self-immolative systems. 
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B.5. Experimental Section 

Synthesis of 2-(nitrobenzyl) hydrogen phthalate  

Phthalic acid (0.100 g, 0.675 mmol) and 2-nitrobenzyl alcohol (0.103 g, 0.675 mmol) were refluxed in 

toluene under argon overnight. The crude product was collected by evaporation under reduced pressure. 

The resulting mixture was dissolved in ethyl acetate, and the product was extracted with aqueous 

sodium bicarbonate followed by acidification with 1 M aqueous hydrogen chloride. Final collection of a 

white solid was performed by vacuum filtration. The product was dried under vacuum and used without 

any further purification (0.203 g, 36%): 
1
H NMR (400 MHz, DMSO-d6) δ 13.35 (s, 1H), 8.15 (dd, J = 

8.1, 1.2 Hz, 1H), 7.85−7.60 (m, 7H), 5.63 (s, 2H); 
13

C (DMSO-d6, 100 MHz) δ 168.4, 167.6, 147.8, 

134.6, 132.1, 131.9, 131.9, 131.5, 129.9, 129.8, 129.4, 128.8, 125.3, 64.1; mp 142−145 °C; HRMS 

(ESI) m/z [M + Na]
+
 for C15H11NNaO6 requires 324.0479, found 324.0480. 

 

Synthesis of 7-hydroxycoumarinyl 2-(nitrobenzyl) hydrogen phthalate (1)  

2-(Nitrobenzyl) hydrogen phthalate (0.200 g, 0.664 mmol), N-(3-(dimethylamino)propyl)-N′-

ethylcarbodiimide hydrochloride (0.126 g, 0.657 mmol), and 4-(N,N-dimethylamino)-yridine (0.089 g, 

0.728 mmol) were dissolved in dry DCM (10 mL), followed by continuous stirring of the solution. 7-

Hydroxycoumarin potassium salt (0.132 g, 0.660 mmol) and 18-crown-6 (0.174 g, 0.660 mmol) were 

added next to the reaction mixture, and the reaction was stirred under an argon atmosphere for 12 h. The 

product was washed with an aqueous saturated sodium bicarbonate solution. The solvent was then 

removed under reduced pressure to yield the crude product as a white solid. Flash chromatography 

(Hex/EtOAc, 30:70 → chloroform/MeOH 95:5) gave the pure final product (0.123 g, 42%): 
1
H NMR 

(DMSO-d6, 400 MHz) δ 8.16−8.08 (m, 2H), 8.06−7.91 (m, 2H), 7.90−7.72 (m, 5H), 7.67−7.56 (m, 1H), 

7.34 (d, J = 2.2 Hz, 1H), 7.23 (dd, J = 8.4, 2.2 Hz, 1H), 6.53 (d, J = 9.6 Hz, 1H), 5.74−5.69 (m, 2H), 

1.24 (s, 1H), 0.84 (t, J = 6.8 Hz, 1H); 13C NMR (DMSO-d6, 100 MHz) δ 166.3, 165.7, 160.0, 154.5, 

153.0, 148.0, 144.2, 134.5, 132.8, 131.0, 130.3, 130.0, 129.9, 129.8, 125.3, 118.6, 117.4, 116.2, 110.2, 
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79.6, 79.4, 79.1, 64.4; mp >260 °C; HRMS (ESI) calcd. for C24H15NO8 [M + H]
+
 requires 446.0870, 

found 446.0872. 

 

Synthesis of 4-(hydroxymethyl)benzeneboronic acid pinacol hydrogen phthalate  

Phthalic anhydride (0.049 g, 0.294 mmol) and 4-(hydroxymethyl)benzeneboronic acid pinacol (0.077 g, 

0.329 mmol) were refluxed in toluene overnight. The crude product was collected by evaporation under 

reduced pressure. The resulting mixture was dissolved in ethyl acetate, and the product was extracted 

with aqueous sodium bicarbonate followed by acidification with hydrogen chloride. Vacuum filtration 

was used to collect the white solid. The product was dried under vacuum and used without any further 

purification (0.045 g, 40%): 
1
H NMR (DMSO-d6, 400 MHz) δ 7.85 (s, 1H), 7.72 (m, 6H), 7.52 (d, 1H, J 

= 0.8 Hz), 1.36 (s, 12H); 
13

C (DMSO-d6, 100 MHz) δ 168.4, 167.9, 139.4, 137.0, 135.0, 134.7,132.6, 

131.9, 129.4, 128.8, 127.8, 127.4, 84.2, 67.1, 25.1; mp 121−123 °C; HRMS (ESI) calcd. for C21H23BO6 

(M − H
+
)
−
 requires 380.1551, found 380.1550 (mass calculated using boron isotope 

10
B). 

 

Synthesis of 7-hydroxycoumarinyl 2-(4-hydroxymethyl)-benzeneboronic phthalate (2)  

4-(Hydroxymethyl)benzeneboronic acid pinacol hydrogen phthalate (0.100 g, 0.262 mmol), N,N-

dicyclohexylcarbodiimide (0.068 g, 0.314 mmol), 4-(N,N-dimethylamino) pyridine (0.011 g, 0.087 

mmol), and 18-crown-6 ether (0.069 g, 0.262 mmol) were dissolved in dry DMF (3 mL) followed by 

continuous stirring of the solution. 7-Hydroxycoumarin potassium salt (0.052 g, 0.262 mmol) was next 

added to the reaction mixture, and the reaction was stirred under an argon atmosphere overnight. The 

dicyclohexylurea byproduct was filtered off as a white solid. The solvent was then removed under 

reduced pressure to yield the crude product as a white solid. Flash chromatography (Hex/EtOAc, 50:50) 

gave the pure final product (5.6 mg, 4.1%): 
1
H NMR (400 MHz, DMSO-d6) δ 8.10 (d, J = 9.6 Hz, 1H), 

8.02−7.90 (m, 2H), 7.87−7.75 (m, 3H), 7.62 (dd, J = 7.0, 1.3 Hz, 2H), 7.43 (d, J = 7.6 Hz, 2H), 7.32 (d, 

J = 2.1 Hz, 1H), 7.18 (ddd, J = 8.5, 2.2, 0.8 Hz, 1H), 6.52 (dd, J = 9.6, 0.8 Hz, 1H), 5.40 (s, 2H), 1.27 (d, 
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J = 0.8 Hz, 12H); 
13

C NMR (DMSO-d6, 100 MHz) δ 166.6, 165.8, 160.3, 154.7, 153.3, 142.8, 138.2, 

135.1, 131.8, 131.6, 131.5, 129.5, 129.2, 128.6, 127.5, 118.4, 116.8, 116.2, 110.4, 80.9, 67.6, 24.9; mp; 

HRMS (ESI) calcd. for C30H27BO8 (M + H)
+
 requires 526.1904, found 526.1908 (mass calculated using 

boron isotope 
10

B). 
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B.7. Schemes and Figures  

 
 

 

Scheme B.1. General unmasking scheme for compound 1 and 2. 
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Figure B.1. Fluorescence of compound 1 (6.27 × 10
−6

 M) as a function of irradiation time (top); 

fluorescence of 2 (6.27 × 10
−6

 M) as a function of peroxide (bottom) in pH 7.0 buffer. Plot inserts depict 

fluorescence at the emission maxima (453 nm) vs time of irradiation or equivalents of hydrogen 

peroxide. 
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Figure B.2. Fluorescence images of a cell with no compound 1 (A−D) and cell incubated with 

compound 1 (50 μM) (E−H) as a function of irradiation time. (I) Average fluorescence intensity as a 

function of time for (i) four cells incubated with compound 1 and exposed to continuous irradiation for 

35 min, (ii) four cells incubated with compound 1 and only exposed to irradiation briefly every 5 min to 

obtain an image, and (iii) a cell without compound 1 and exposed to continuous irradiation for 35 min. 

Scale bar represents 5 μm in all images.  
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B.8. Supporting Information for Appendix B 

Complete electronic supporting information is available on ACS website 

(http://pubs.acs.org/doi/suppl/10.1021/jo501900h)  

 

Cell Preparation and Imaging 

Cell culture 

Drosophila S2 cells were used in all live cell experiments. Cells were cultured according to the culture 

techniques described previously [1-3]. Briefly, cells were cultured in Shields and Sang M3 insect 

medium with heat-inactivated 10% fetal bovine serum 12.5 mM streptomycin and 36.5 mM penicillin in 

a 22 °C incubator. 

 

Cytotoxicity assay 

Cells (1×10
6
 cells/mL) were incubated with different dilutions (100 µM, 50 µM, 25 µM, 12.5 µM, 6.25 

µM and 3.125 µM) of the 7-hydroxycoumarinyl 2-(nitrobenzyl)ethyl hydrogen phthalate in phosphate 

buffer saline (PBS, pH=7.1) for an hour. Cytotoxicity of the compound was measured using trypan blue 

exclusion assay [4]. One volume of the cell suspension from each dilution and one volume of the trypan 

blue stain were incubated for 3 minutes at room temperature. The number of viable cells was counted 

using a hemacytometer . 

 

Cell sample preparation for fluorescence imaging  

Cells (50×10
5
 cells/mL) were incubated with 50 µM of the compound (in PBS, pH=7.1) for an hour. 

The RBB-Tiggrin ligand-coated microscope cover glasses were prepared as described previously [5]. 

Incubated cells were allowed to spread on ligand coated cover glass for half an hour at room 

temperature. Cells were rinsed with PBS (pH=7.1) to remove unspread cells before imaging 

experiments. 
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Fluorescence imaging and analysis 

All fluorescence imaging experiments were performed on a Nikon TE-2000 microscope in wide-field, 

epi-fluorescence mode with a 100× Apo, 1.49 numerical aperture oil-immersion objectiveSamples were 

illuminated with mercury lamp (X-Cite 120 PC, EXFO Photonic Solutions Inc., Mississauga, Ontario, 

Canada) through excitation filter (365/35 nm, XF1409, Omega optical, Brattleboro, VT, USA) and 

reflected via dichoric mirror (400DCLP, Omega optical, Brattleboro, VT, USA). Resultant fluorescence 

signal was collected through emission filter (450/65 nm, XF3002, Omega optical, Brattleboro, VT, 

USA). Fluorescence images were collected every 500 ms for a total of 33.3 minutes using PhotonMAX 

512 EMCCD camera. All experiments were performed at room temperature. 

 

Cell sample preparation for fluorescence imaging  

Cells (50×10
5
 cells/mL) were incubated with 50 µM of the compound (in PBS, pH=7.1) for an hour. 

The RBB-Tiggrin ligand-coated microscope cover glasses were prepared as described previously [5]. 

Incubated cells were allowed to spread on ligand coated cover glass for half an hour at room 

temperature. Cells were rinsed with PBS (pH=7.1) to remove unspread cells before imaging 

experiments. 

 

Fluorescence imaging and analysis 

All fluorescence imaging experiments were performed on a Nikon TE-2000 microscope in wide-field, 

epi-fluorescence mode with a 100× Apo, 1.49 numerical aperture oil-immersion objectiveSamples were 

illuminated with mercury lamp (X-Cite 120 PC, EXFO Photonic Solutions Inc., Mississauga, Ontario, 

Canada) through excitation filter (365/35 nm, XF1409, Omega optical, Brattleboro, VT, USA) and 

reflected via dichoric mirror (400DCLP, Omega optical, Brattleboro, VT, USA). Resultant fluorescence 

signal was collected through emission filter (450/65 nm, XF3002, Omega optical, Brattleboro, VT, 
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USA). Fluorescence images were collected every 500 ms for a total of 33.3 minutes using PhotonMAX 

512 EMCCD camera. All experiments were performed at room temperature. 

 

pH and concentration sensitivity assays 

Effect of the surrounding media pH on the cleavage of the 7-hydroxycoumarin from the Compound 1 

was monitored with the same imaging conditions used for live cell imaging experiments. 25 µM of 

compound was prepared in PBS (pH=2.5, pH=5.0, pH=7.1, pH=9.0 and pH=11.5). 50 µL of the diluted 

compound were dropped on microscope glass coverslip and fluorescence signal was monitored with 

time. Similarly, the relationship between initial concentration and the fluorescence intensity was 

monitored for 100 µM, 50 µM, 25 µM and 12.5 µM of the compound in PBS (pH=7.1) over time. 
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Figures and Tables 

 

Figure SB.1. Images of cells incubated with compound but no illumination except brief (i.e., a few 

seconds) illumination to collect the images). Initial fluorescence at time zero is due to cellular auto 

fluorescence. Some bleaching is seen and no significant increase in fluorescence is observed. 

 

 

Figure SB.2. Fluorescence intensity with illumination time for 25 μM compound in (red) PBS, pH=2.5; 

(black) PBS, pH=5.0; (blue) PBS, pH=7.1; (green) PBS, pH=9.5. At 25 minutes 0.25 μL of 1 M NaOH 

is added to (red) and (black). 
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Table SB.1. Cytotoxicity of compounds as measured with trypan blue exclusion assay. 

Concentration of the compound in 

PBS (pH=7.1) 

% of viable cells (Trypan 

blue assay) 

100 µM 78 

50 µM* 83 

25 µM 94 

12.5 µM 100 

6.25 µM 100 

3.125 µM 100 

*Fluorescence imaging performed with 50 µM compound 
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APPENDIX C 

BODIPY-DERIVED PHOTOREMOVABLE PROTECTING GROUPS UNMASKED WITH 

GREEN LIGHT  

“Reproduced with permission from [Goswami, P. P.; Syed, A.; Beck, C. L.; Albright, T. R.; Mahoney, 

K. M.; Unash, R.; Smith, E. A.; Winter, A. H., Journal of American Chemical Society, 137, 3783-3786 

(2015).] Copyright [2015] American Chemical Society.” 

 

Pratik P. Goswami, Aleem Syed, Christie L. Beck, Toshia R. Albright, Kaitlyn M. Mahoney, Ryan 

Unash, Emily A. Smith and  Arthur H. Winter  

C.1. Abstract 

Photoremovable protecting groups derived from meso-substituted BODIPY dyes release acetic acid with 

green wavelengths > 500 nm. Photorelease is demonstrated in cultured S2 cells. The photocaging 

structures were identified by our previously proposed strategy of computationally searching for 

carbocations with low-energy diradical states as a possible indicator of a nearby productive conical 

intersection. The superior optical properties of these photocages make them promising alternatives to 

the popular o-nitrobenzyl photocage systems. 

 

C.2. Introduction 

Photoremovable protecting groups, sometimes called photocages or phototriggers, are popular light-

sensitive chemical moieties that mask substrates through covalent linkages that render the substrates 

inert. Upon irradiation, the masked substrates are released, restoring their reactivity or function. While 

photocages have important applications in areas such as organic synthesis [1-3], photolithography [4, 5], 

and light-responsive organic materials [6-8], these structures are particularly prized for their ability to 

trigger biological activity with high spatial and temporal resolution [9-13]. Examples of such chemical 

tools include photocaged proteins [14-16], nucleotides [17, 18], ions [19-23], neurotransmitters [24, 25], 
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pharmaceuticals [26, 27], fluorescent dyes [28-30] and small molecules [31, 32] (e.g. caged ATP). 

These biologically relevant caged molecules and ions can be released from the caging structure within 

particular biological microenvironments using pulses of focused light. The most popular photocages 

used in biological studies are the o-nitrobenzyl systems [31-33] and their derivatives, but other 

photocages that see significant use include those based on the phenacyl [34], acridinyl [35], benzoinyl 

[36, 37], coumarinyl [38], xanthenyl [39] and o-hydroxynaphthyl structures [40]. Unfortunately, with 

few exceptions [41, 42], a serious limitation of most popular photocages is that they absorb mostly in 

the ultraviolet where the limited penetration of UV light into tissues largely restricts these studies to 

fixed cells and tissue slices. Furthermore, prolonged exposure of cells or tissues to intense UV light can 

lead to cellular damage or death. 

Consequently, new photocaging structures that absorb visible light are urgently needed. 

Advantages of visible light irradiation include diminished phototoxicity compared to UV light and 

deeper optical penetration into tissue. Additionally, visible light photolysis can be performed with cheap 

lamps and Pyrex glassware, while UV photolysis requires expensive UV sources. Unfortunately, the 

major problem that has hindered the development of new photocages that absorb visible light is the lack 

of a structure-reactivity relationship for excited state heterolysis. That is, it is difficult to predict a priori 

which structures, when irradiated with light, will undergo an efficient photoheterolysis reaction. Thus, 

attempts to prepare visible light absorbing photocages have mostly bypassed this problem by using 

metal-ligand photoreleasing systems [42-44] or by using creative indirect schemes.  Examples of such 

creative schemes include upconverting nanoparticles with surface-attached UV-absorbing photocages 

[45-47], using multiphoton absorption uncaging processes[48-50] or release mediated by photoinduced 

electron transfer with a sacrificial electron donor [51].   

However, visible light absorbing organic structures that offer simple photorelease schemes and 

structures would potentially make a more compelling case for widespread use in biologically oriented 

labs [52]. A recent computational study performed in our lab suggested the hypothesis that 
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photoheterolysis reactions may be under conical intersection control [53]. That is, photoheterolysis of 

C-LG (carbon—leaving group) bonds to generate ion pairs [54] may be favored if the ion pair has 

access to a nearby productive conical intersection that provides an efficient channel for the excited state 

of the photoprecursor to decay to the ground-state ion pair. Because conical intersections are 

challenging to compute, we further suggested the idea of using the vertical energy gap of the 

carbocation to its first excited state as a simple predictor of a nearby conical intersection (CI). A low S0-

S1 energy gap of the cation would suggest the possibility of a nearby CI between the S0 and S1 surfaces 

and the potential for a productive mechanistic channel for the photochemistry to proceed from the 

excited state of the photocaged precursor to the ion pair.   

 

C.3. Results and Discussion 

Computational studies 

Thus, to find visible light absorbing photocages we searched for potential photocaging structures that 

would generate carbocations with low-lying diradical states. A time-dependent density functional theory 

(TD-DFT) computational investigation of carbocations attached to the BODIPY scaffold at the meso 

position indicated that these ions have low-lying excited states. For example, the TD-DFT computed S0-

S1 vertical energy gap of the carbocation derived from C-O scission of 2 is 8 kcal/mol (TD-B3LYP/6-

311+G (2d,p), suggesting a near-degenerate diradical configuration. Indeed, all of the cations derived 

from C-O scission of 1-6 have vertical gaps <13 kcal/mol (see supporting information for computational 

details), and have singlet states with considerable diradical character. Large singlet stabilizations upon 

switching from restricted  spin-purified unrestricted singlet computations indicate that the singlet 

states can be described as diradicals or possessing considerable diradical character (see supporting 

information for details). Thus, the exact vertical energies from the TD-DFT computations are to be 

viewed with suspicion, but it is clear that there are low-energy diradical forms for these ions, suggesting 

a nearby CI between the closed-shell singlet and singlet diradical forms of the carbocations in the 
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vicinity of the ion pair geometry. Further, the singlet-triplet gaps of all the carbocations derived from 1-

6 are ~5 kcal/mol in favor of the triplet state, suggesting that the “carbocations” produced by heterolysis 

of 1-6 may in fact be better described as ion diradicals than by traditional closed-shell carbocation 

structures [55].  

Encouraged by these computational studies, we synthesized structures 1-6 as photocages for 

acetic acid (Figure C.1). Advantages of the BODIPY scaffold include simple syntheses, a compact 

structure, known biological compatibility [56] and high extinction coefficients in the visible [57]. Other 

recent studies have shown BODIPY can be used as laser dyes [58] and have photochemical heterolysis 

reactivity at boron [59]. Photorelease studies, described below, indicate that these structures release 

acetic acid upon photolysis with wavelengths > 500 nm.   

 

Photorelease studies and quantum efficiencies  

The observed substrate release rate as a function of photolysis time is quantified by the quantum 

efficiency parameter (εФ), which is the product of the extinction coefficient at the irradiation 

wavelength (ε) and the quantum yield (Ф). Extinction coefficients for 1-6 were determined by UV-Vis 

spectroscopy (see Table C.1). To compute the quantum yields of photorelease (Ф), the flux of a 532-nm 

laser excitation beam (ND:YAG, 1
st
 harmonic) was determined using potassium ferrioxalate 

actinometry. Release of acetic acid as a function of laser irradiation time in MeOH was followed by 

quantitative LC/UV (see supporting information for details). Each quantum yield reported is the average 

of 3 separate runs.   Essentially identical actinometry measurements performed after photolysis 

demonstrated high flux stability of the laser. Additionally, repeating the quantum yield measurement for 

2 on a different day with a different laser power setting (in triplicate) gave essentially the same value for 

the quantum yield, indicating reproducibility. A preparative photolysis of 2 in MeOH gave a meso-

substituted methyl ether adduct as a stable photoproduct of the photocaging moiety, suggestive of 

solvent trapping of an intermediate carbocation. Mass spec studies of the photoproduct also indicate 
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trace amount of deborylated BODIPY photoproduct as well as BODIPY dimers, possibly arising from 

the diradical nature of the “carbocations” formed from heterolysis leading to coupling processes. 

Additionally, lamp photolysis of 2 showed no major difference in release of acetic acid under argon or 

air atmosphere. Curiously, unlike 1-4 and 6, the brominated compound 5 was found to be unstable. It 

decomposes after one day stored on the shelf in the dark, and photolysis of freshly prepared and purified 

5 led to secondary products in addition to acetic acid release, and photolysis was accompanied by rapid 

solution bleaching. Consequently, we were not confident in our quantum yield measurements for 5 and 

excluded it from Table C.1. Probably, 5 also has access to alternative photochemical pathways (e.g. C-

Br homolysis) and thermal degradation channels similar to benzyl-based photocages, which include 

bromine [60]. In contrast, photocaged compound 1-4 and 6 are thermally stable in the dark. Boiling 

these compounds in MeOH for 1h in a foil wrapped vessel led to no change in the 
1
H NMR spectrum 

(see supporting information for spectra). 

In general, the quantum efficiencies for 1-4 and 6 are slightly lower or comparable with the 

popular caged o-nitrobenzyl systems [61]. Quantum yields for 1-4 are lower than those for typical o-

nitrobenzyl  photocaged structures, but this lower quantum yield is compensated by the much higher 

extinction coefficients of the BODIPY chromophores compared to the o-nitrobenzyl chromophore, 

leading to reasonable quantum efficiencies. The iodinated derivative 6 has the largest quantum 

efficiency, comparable to that of some caged o-nitrobenzyl systems, but with a λmax at ~550 nm rather 

than in the UV (the parent o-nitrobenzyl system has a λmax of ~280 nm while a popular dimethoxy 

analog has a λmax of ~350 nm), although still much lower than the best known photocaging system. A 

plausible explanation for the higher quantum yield of 6 is that the iodine atoms promote intersystem 

crossing (ISC) to a triplet state, which are usually longer lived than singlet excited states, giving more 

time for release. For example, the phenacyl photocage derivatives described by Givens undergo 

photorelease in the triplet state [62]. The plausibility of a rapid ISC event is supported by the very weak 

fluorescence of solutions of 5 and 6, compared to solutions of 1-4. 
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Optical properties of 1-6  

The UV-Vis spectra and fluorescence spectra of 1-6 are shown in Figure C.2. These structures absorb 

between 515 and 553 nm (and emit between 520 and 580 nm), typical of simple BODIPY dyes, and 

feature large extinction coefficients (~50,000-70,000 M
-1

cm
-1 

at λmax in MeOH). 

 

Cell Studies  

To test the viability and usefulness of the BODIPY derived photocages in biological systems, compound 

7 was synthesized. 2,4-dinitrobenzoic acid is a known [63] fluorescence quencher for BODIPY dyes. 

This quencher was coupled with our BODIPY moiety using a simple DCC/DMAP ester coupling 

reaction. We anticipated that 7 would be weakly fluorescent, but upon photorelease of the quencher the 

fluorescence would increase. Indeed, when 7 was irradiated with a mercury lamp (excitation = 500 nm, 

see supporting information) and its fluorescence was plotted over time (Figure C.3N). There was a 

steady growth in fluorescence attributed to release of the quencher. Photorelease of the quencher was 

also confirmed by
 1

H NMR. As a control, similar steady state fluorescence measurements were 

performed over time for compound 7 in the dark without light exposure, leading to essentially no 

change in fluorescence.  

Compound 2 and 7 were incubated with Drosophila S2 cells and monitored using fluorescence 

microscopy (Figure C.3A-L). The Drosophila S2 cells loaded with 2 and 7 were irradiated continuously 

with 500-nm light. Fluorescence images were collected every 36 ms for a total of 10.8 seconds. The 

fluorescence intensity for compound 7 inside cell as shown in Figure C.3I-L increases rapidly. This 

increase in fluorescence can be attributed to the release of the quencher. The same fluorescence study 

with 2 as a control in Figure C.3E-H shows no such increase in fluorescence. For 2, the leaving group is 

acetate, which is not a quencher. Thus, little change in the fluorescence would be anticipated upon 

photorelease of acetic acid from this moiety. The background decay in fluorescence for both 2 and 7 can 

be attributed to photobleaching under intense focused light. Parts A-D of Figure C.3 show that there is a 
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minimal change in fluorescence of cells when they are irradiated without being loaded with compound 2 

or 7. Figure C.3M shows the fluorescence intensity change over time for cells incubated with compound 

2 and 7, and the control experiments without any compound.   

Cytotoxicity of compounds was measured with trypan blue exclusion assay. All values are 

normalized with the control cells which were not incubated with any compound. At a compound 

concentration of 25 µM, 97% for compound 2 and 92% for compound 7 remained viable after 1h.  

 

C.4. Conclusions 

BODIPY-derived photocages unmask carboxylic acid with green light excitation > 500 nm and 

photocleavage can be carried out in living cells. These photocages are promising alternatives for the 

popular o-nitrobenzyl photocaging systems, being easy to synthesize, utilizing a biocompatible 

chromophore, and having superior optical properties to the most popular photocages in current use. 

More generally, our strategy of identifying new photocages by searching for carbocations with low-

energy diradical states seems to be a promising one. BODIPY derivatives that release functional groups 

other than carboxylic acids and that have red-shifted absorptions into the biological window (600-1000 

nm) are currently under investigation. 
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C.6. Figures and Tables 

 

Figure C.1.  (a) Possible pathway for the photolysis of photocaged acetic acid; (b) substrates describes 

in this study. 
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Figure C.2. Normalized absorbance and fluorescence spectra of 1-6. 
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Figure C.3. Fluorescence image of S2 cells with no BODIPY compound (A-D), cells incubated with 

compound 2 (E-H) and cells incubated with compound 7 (I-L) as a function of irradiation time (top). 

Scale bar is 20 µm (shown in panel A) and is the same for all the images. Images were adjusted to same 

contrast in each row. Average fluorescence intensity profile versus irradiation time using 100% lamp 

power for excitation in cells (bottom left). Increase in free BODIPY fluorescence signal over time with 

quencher release from compound 7 in BES buffer (bottom right). Plot insert (bottom right) depicts the 

difference in growth of fluorescence vs time for compound 7 with (i) and without (ii) light irradiation. 
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Table C.1.  Optical properties and quantum efficiencies of 1-6
a
 

 λmax (nm) λem (nm) ε (x 10
4 

M
-1

 cm
-1

) Ф (x 10
-4

) ε Ф  

(M
-1

cm
-1

) 

1 519 527 5.7 6.4 37 

2 515 526 7.1 9.9 70 

3  544 560 6.2 9.5 59 

4  544 570 4.8 4.0 19 

5  545 575 -- -- -- 

6  553 576 4.9 23.8 117 

a 
Quantum yields of acetic acid release (Ф) determined by ferrioxalate actinometry in MeOH with a 532 

nm ND:YAG laser source and release followed using quantitative LC-UV (Ф values are the average of 

3 runs). 
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C.7. Supporting Information for Appendix C 

Complete electronic supporting information is available on ACS website 

(http://pubs.acs.org/doi/suppl/10.1021/jacs.5b01297) 

 

Fluorescence studies of compound 7 

Steady-state absorption spectra of compound 2 and 7 in methanol were measured using a Hewlett-

Packard 8453 UV-Visible spectrometer (Agilent technologies Inc., Santa Carla, CA). Compound 7 

contains a fluorescence quencher 2, 4-Dinitrobenzene attached to BODIPY through a photo sensitive 

ester linkage. A 100 µM solution of compound 7 in N,N-bis(2-hydroxyethyl) taurine (BES) buffer 

(pH=7.0) was excited with a mercury lamp (100% power, X-Cite 120 PC, EXFO Photonic Solutions 

Inc., Mississauga, Ontario, Canada) through excitation filter (HQ500/20 nm, Chroma Technology Crop. 

Bellows Falls, VT) and reflected by dichoric mirror (Q515LP, Chroma Technology Crop.) and directed 

to the cuvette. Quencher release from the compound 7 was monitored by measuring an increase in 

steady-state fluorescence from released BODIPY using a SPEX Fluoromax (ISA Jobin-Yvon/SPEX, 

Edison, NJ) with a 5-nm band pass and corrected for lamp spectral intensity and detector response. As a 

control, similar steady state fluorescence measurements were performed for compound 7 in the dark 

without any light exposure. For all fluorescence measurements samples were excited at 500 nm. 

 

Cell Studies  

Cell sample preparation for fluorescence imaging  

All live cell experiments are performed with Drosophila S2 cells expressing αPS2βPS integrins. S2 cells 

were cultured according to the culture techniques described previously [1-3]. Briefly, cells were 

cultured in Shields and Sang M3 insect medium (Sigma-Aldrich, St. Louis, MO) with heat-inactivated 

10 % fetal bovine serum (Irvine Scientific, Santa Ana, CA), 12.5 mM streptomycin and 36.5 mM 

penicillin in a 22 °C incubator (Fisher Scientific, Pittsburgh, PA).  Cells (50×10
5
 cells/mL) were 
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incubated with 25 µM of the compound 2 or 7 in M3 media for an hour. Cells were washed twice with 

serum free M3 media. The RBB-Tiggrin ligand coated microscope cover glasses were prepared as 

described previously [4]. Incubated cells were allowed to spread on ligand-coated cover glass for half an 

hour at room temperature. Cells were rinsed with BES buffer (pH=7.0) multiple times before imaging 

experiments. 

 

Live cell fluorescence imaging  

All fluorescence imaging experiments were performed on a Nikon Eclipse TE2000U microscope 

(Melville, NY) operating in wide-field, epi-fluorescence mode and equipped with a 100× Apo, 1.49 

numerical aperture oil-immersion objective. Samples were illuminated with a mercury lamp (X-Cite 120 

PC, EXFO Photonic Solutions Inc., Mississauga, Ontario, Canada) operating at 100% or 25 % lamp 

power with a ND4 neutral density filter in the optical path. The excitation filter (HQ500/20x) dichoric 

mirror (Q515LP) and emission filter (HQ535/30m) were from Chroma Technology Crop. Bellows Falls, 

VT. Fluorescence images were collected every 36 ms for a total of 10.8 seconds over 512×512 pixels 

using a PhotonMAX 512 EMCCD camera (Princeton Instruments, Trenton, NJ) and WinView 2.6 

imaging software (Princeton Instruments, Trenton, NJ). Images were further analyzed with imageJ 

(National institutes of Health, USA) and IGOR Pro V 6.32A (WaveMetrices Inc., Lake Oswego, OR). 

All imaging experiments were performed at room temperature. 

 

pH and concentration sensitivity assays 

Surrounding media pH was changed to see the effect of media pH on the photocleavage of the BODIPY 

from compound 7. Released BODIPY was monitored with a similar imaging setup used for live cell 

imaging experiments. 50 µM compound 7 was made in PBS (pH=2.7, pH=5.2, pH=7.2 and pH=9.7). 50 

µL of the diluted compound was dropped on microscope glass coverslip and the fluorescence signal was 
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monitored with irradiation time. The resultant fluorescence signal was background subtracted and 

averaged over three measurements.  

 

Cytotoxicity assay 

Cells (1×10
6
 cells/mL) were incubated with 25 µM of the compound 2 or 7 in serum free M3 media for 

an hour. Cells were rinsed thrice with phosphate buffered saline (pH=7.2). Cytotoxicity of the 

compound was measured using trypan blue exclusion assays [5]. Equal volumes of the cell suspension 

and 0.4% trypan blue stain (Thermo Scientific
TM

 Hyclone
TM

 Trypan Blue, Waltham, MA) were 

incubated for 3 minutes at room temperature. The number of viable cells that excluded the dye was 

counted using the hemacytometer (Hausser Bright-Line, Hausser scientific, Horsham, PA). All values 

are normalized with the control cells which are not incubated with any compound. Error represents 

standard deviation in two independent measurements. 

 

Additional studies to investigate the stability of the compound at physiological temperature 

A 100 μM solution of compound 7 in Ringer’s live cell imaging buffer (pH=7.2, 155 mM NaCl, 5 mM 

KCl, 2 mM CaCl2, 1 mM MgCl2, 2 mM NaH2PO4, 10 mM HEPES, 10 mM Glucose) was incubated at 

37 °C. Fluorescence from the compound was observed at different time intervals on SPEX Fluoromax 

(ISA Jobin-Yvon/SPEX, Edison, NJ). At each time interval, sample was excited at 500 nm with a 5 nm 

band pass and corrected for lamp spectral intensity and detector response to collect the fluorescence. 

After 13 hours of incubation at 37 °C, quencher release studies were performed as described. The 

natural logarithm of fluorescence intensity for compound 7 at 570 nm was plotted against time (min). 

Using the first order kinetic decay, the linear curve obtained was used to calculate the half-life (t1/2) of 

compound 7 in the given conditions: 

 

𝑡1/2 =  
𝑙𝑛2

−𝑘
=

0.6931

0.0024
𝑚𝑖𝑛 = 288.8 𝑚𝑖𝑛 = 4.813 ℎ 
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Figures and Tables 
 

 

 Figure SC.1. Normalized absorption spectra for compound 2 (black) and 7 (red) in methanol.  

 

. 

Figure SC.2. Increase in free BODIPY fluorescence signal over time with quencher release from 

compound 7 in BES buffer. (Upper panel)  Sample was continuously irradiated with light, (Lower 

panel) Sample was kept in dark without any light irradiation before each measurement.  
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Figure SC.3. Average fluorescence intensity profile versus irradiation time using 100% lamp power for 

excitation. All intensity values are background subtracted and averaged over 30 to 42 cells. 

 

 

 

Figure SC.4. Average fluorescence intensity profile versus irradiation time using 25% lamp power for 

excitation. All intensity values are background subtracted and averaged from at least 15 cells. 
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Figure SC.5. Increase in free BODIPY fluorescence signal over time with quencher release from 

compound 7 in PBS buffer with different pH. 
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Figure SC.6. Observed fluorescence from the compound 7 incubated at 37 °C for 13 hours. B) Increase 

in the fluorescence due to quencher release upon irradiation after 13 hours of incubation period. Spectra 

were normalized with fluorescence intensity at 510 nm. C) Fluorescence intensity vs time (min) of 

compound 7 at 570 nm. 
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Table SC.1. Cytotoxicity of compounds as measured with trypan blue exclusion assay. 

Compound (25µM) % of Viable cells  

Compound 2 97±2 

Compound 7 92±2 
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APPENDIX D 

BODIPY-DERIVED PHOTOCAGES CLEAVED WITH RED LIGHT  

Julie A. Peterson, Aleem Syed, Kaitlyn M. Mahoney, Pratik P. Goswami, Toshia R. Albright, Chamari 

Wijesooriya, Andrew S. Dutton, Emily A. Smith and  Arthur H. Winter  

D.1. Abstract 

A family of BODIPY-derived photocages was synthesized that release carboxylic acids upon irradiation 

with wavelengths spanning the visible and entering the biological window (> 600 nm). These 

photocages feature potent chromophores (ɛ = 50,000-120,000 M
-1

cm
-1

), stability to heating in the dark, 

cell viability, and the ability to monitor the photorelease process using fluorescence spectroscopy via a 

fluorescence shift of the photocage byproduct. Photorelease with red light is demonstrated in live HeLa 

cells, Drosophila S2 cells, and bovine GM07373 cells using fluorescence microscopy. These photocages 

provide orthogonal external control over when, where, and how much of a substrate is activated using 

irradiation with essentially any visible wavelength. 

 

D.2. Introduction 

Photocages are light-sensitive moieties that are prized for giving investigators spatial and temporal 

control over the release of covalently-linked substrates [1-4]. When a photocage blocks a critical 

functional group on the substrate (e.g. a carboxylic acid), the substrate is rendered biologically inert. 

Light-induced cleavage of the photocage-substrate bond restores the reactivity or function of the 

substrate. Photocages have been used to activate proteins [5, 6], nucleotides [7, 8], ions [9-11], 

neurotransmitters [12, 13], pharmaceuticals [14, 15], and fluorescent dyes using light [16-18]. The vast 

majority of photocaging studies used in biological studies exploit the o-nitrobenzyl photocages[19, 20] 

and their derivatives, but others include those based on the phenacyl [21, 22], acridinyl [23], benzoinyl 

[24, 25], coumarinyl [26] and o-hydroxynaphthyl [27] structures.       
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A major limitation of these popular photocages is that their chromophores absorb mostly in the 

ultraviolet region of the optical spectrum. Ultraviolet light has limited tissue penetration, and thus 

restricts photocaging studies to fixed cells and thin tissue slices. In addition, exposure of cells or tissues 

to intense UV light eventually results in phototoxic cell damage or death. The ideal wavelength range to 

be used in animal tissues, known as the biological window, is ~600-1000 nm, where tissues have 

minimal absorbance. At these far red/near-IR wavelengths, light achieves maximal tissue penetration 

while minimizing phototoxicity [28]. Another problem with UV-absorbing photocages is that it is 

difficult to monitor the photorelease process in cells. It would be exceedingly useful to have a way to 

directly monitor the extent of photorelease via some reporting mechanism (e.g. a diagnostic increase in 

fluorescence), providing investigators proof of photorelease.   

The drawbacks of using UV light as a biological initiator has led to a number of different 

approaches to permit photorelease of biologically-active substrates using visible light. The de facto 

method for releasing target molecules with visible light is to exploit multiphoton absorption methods, 

wherein a UV-absorbing photocage is excited with two or more visible light photons [29-31]. Other 

methods to achieve photorelease using visible light include photorelease initiated via photoinduced 

electron transfer [32-34], via metal-ligand photocleavage [35] or by using photosensitizers that generate 

reactive singlet oxygen that initiates a reaction cascade leading to substrate release [36-38]. 

However, for most cellular/tissue studies it would be desirable to achieve photorelease with 

simple organic structures that directly release substrates with single photons of visible light. Recently, a 

new class of photoremovable protecting groups derived from meso-substituted BODIPY dyes was 

reported by us and Weinstain [39, 40]. For these photocages (1 and 2 in Figure D.1), cleavage occurs 

using green wavelengths ~520 nm. In related recent work, Klan and coworkers have also demonstrated 

the photorelease of carbon monoxide from irradiation of BODIPY-[41] and xanthene-[42]substituted  

carboxylic acids.  
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D.3. Results and Discussion 

Building upon our prior work, we synthesized compounds 3-6 that have extended conjugation and a red-

shifted λmax values between 580  to 670 nm (λem between 600  to 690 nm) (See Figure D.2). Compounds 

3-6 are thermally stable, showing no change by NMR when refluxed in the dark for 1 hour, yet release 

acetic acid when irradiated with visible light. The quantum yields of the release of acetic acid (ϕ) of 3-6 

were determined by ferrioxalate actinometry and are reported as the average value of three separate 

trials. The extinction coefficient (ε) at the λmax was determined by UV-vis spectroscopy (Table D.1). 

These photocages feature high extinction coefficients typical of BODIPY dyes (~50,000-120,000 M
-

1
cm

-1
 at λmax). In general, the quantum yields (ϕ) for photorelease of acetic acid for the longest 

wavelength absorbing photocages 3-6 are lower than those of the unconjugated substrates (1 or 2) but 

show release inside cells within a few minutes (Figure D.3I), making them highly practical for most 

biological studies given that red light irradiation has negligible phototoxicity. 

Compound 7 was synthesized to test the usefulness of these photocages in live cell imaging. 4-

nitrobenzoic acid was used as the leaving group, since nitrobenzoic acids are known fluorescence 

quenchers of BODIPY dyes. A short ethylene glycol chain (3 units) was appended to the styryl groups to 

aid with water solubility.   

Compound 7 does not exhibit detectable fluorescence when kept in the dark at room temperature. 

We anticipated that upon irradiation a fluorescent peak would grow in at ~685 nm, similar to the 

fluorescence of compound 6, as a result of release of the quencher leading to an increase in the 

fluorescence of the photocage byproduct. Interestingly, when 6 or 7 are irradiated either in MeOH or cell 

culture buffer we observe growth in fluorescence at 610 nm (See Figure D.3). This new blue-shifted 

fluorescent peak is similar to the emission wavelength of 3, a BODIPY photocage containing only one 

of the styryl groups. Thus, the BODIPY byproduct is not simply the expected solvent trapping product 

of a postulated intermediate carbocation at the meso position (A small amount of this meso-methyl 
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alcohol photoproduct of 6 was isolated as a photoproduct, but this is not the major photoproduct and is 

not responsible for the blue-shifted fluorescence). 
1
H NMR studies of the photolysis of 7 confirm that 

the quencher is released upon irradiation. Several blue-shifted photoproducts of the BODIPY have 

proven difficult to isolate due to their poor solubility. Photoproduct studies of 6 and 7 under air show 

that in addition to acetic acid, p-anisaldehyde is a minor photoproduct for 6 and the tri(ethylene) glycol-

substituted anisaldehyde for 7. Formation of the benzaldehyde and a λem at a similar wavelength to the 

mono-styryl derivative indicates that the major photocage byproducts have either cleaved or broken the 

conjugation of a styryl group.  

The simplest release mechanism to consider is a photoheterolysis mechanism, either from the 

singlet or triplet excited state. Because the iodinated derivative 2 exhibits the highest quantum yield of 

release (Table D.1), it seems likely that the triplet excited state is a reactive state, since iodine atoms are 

well known to promote intersystem crossing via the heavy atom effect. It should be noted that the 

putative carbocation formed by heterolysis of 6 is computed to be a triplet ground state carbocation by 

ca. 5 kcal/mol using density functional theory (UB3LYP/6-31G(d), including correction for singlet spin 

contamination). Indeed, we selected meso-substituted BODIPY dyes as potential photocages based on 

these ions having low-lying diradical states, which we had previously suggested might be critical for 

providing a surface crossing between the excited state surface and the ground state ion pair surface [43]. 

Inspection of the computed singly occupied molecular orbitals (SOMOs) of the triplet carbocation 

indicates that the radicals are located on the styryl groups. Little is known about triplet carbocation 

reactivity [44], but triplet diradicals are known to react with oxygen, which could lead to a pathway 

involving oxidative cleavage at one of the styryl groups. A similar styryl BODIPY compound has been 

demonstrated to be reactive to radicals in the ground state, breaking the conjugation of the olefin and 

causing a similar wavelength shift to what we observe [45].  

To corroborate that this fluorescence blue shift was correlated with release of the carboxylic acid 

and not just a competitive side photoreaction, compound 8 was synthesized as a control without a 
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leaving group and showed no fluorescence blue-shift upon photolysis. Irradiation of this compound 

simply led to a slow fluorescence bleaching at long irradiation times. This experiment correlates the 

blue-shifted fluorescence to the photorelease process. While unanticipated, this blue-shifted fluorescence 

fortuitously provides a convenient assay by which to follow the photorelease process using fluorescence 

spectroscopy, since the photocaged acid 6 does not absorb at 605 nm, the wavelength the blue-shifted 

byproduct absorbs. 

To test whether photorelease could be performed in cells, compound 7 was incubated with HeLa 

cells at 36±2 ºC. The cells were irradiated with 635 ±15 nm light. Fluorescence emission was measured 

at 605 nm. Control experiments were performed without irradiation. An increase in fluorescence was 

observed at 605 nm when irradiated (Figure D.3 A-D). In control studies, no increase in fluorescence 

was observed in the dark (Fig. D.3 E-H). Similar imaging studies were performed in bovine GM07373 

cells and Drosophila S2 cells (see supporting information), yielding similar results. Cytotoxicity studies 

showed no decrease in cell viability (trypan blue exclusion assay) with treatment of 7 (90±3% for HeLa 

cells with no treatment, 92±5% for HeLa cells with 7, 95±2% for S2 cells without treatment, 93±2% for 

S2 cells with 7, 90±1% for GM07373 cells without treatment, and 92±5% for GM07373 cells with 7). 

 

D.4. Conclusions 

BODIPY-derived photocages release carboxylic acids at a range of wavelengths in the visible 

(absorptions range from ~450 to 700 nm (Figure D.2). The wide range of wavelengths of absorbance 

allows photorelease to be achieved using essentially any color of visible light. The unexpected blue-shift 

of the fluorescence of 6 and 7 upon photorelease provides a convenient assay to monitor the 

photorelease of substrates using fluorescence since the photocages have no emission at this wavelength 

prior to irradiation. In future work, the possibility of the targeted and controlled release of 

pharmaceuticals or other biomolecules using irradiation with red light in the biological window is an 

intriguing one, especially when coupled with a diagnostic change in fluorescence to follow and quantify 
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the release process. Additionally, it will be interesting to test the maximum wavelengths of photorelease 

possible, as increasing wavelengths correspond to decreased photon energies. 
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D.6. Figures and Tables 

 
Figure D.1. Substrates described in this study. Substrates 1 and 2 are from our prior work [40],

 
while 3-

8 are described here.  

  



www.manaraa.com

217 

 

 

 

Figure D.2.  Normalized absorption and fluorescence spectra of 1-6. 
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Figure D.3.  Fluorescence images of HeLa cells incubated with compound 7 irradiated with 635-nm 

light (A-D) and cells incubated with compound 7 with no irradiation (E-H) as a function of irradiation 

time. Average fluorescence intensity v. time of 7 incubated in HeLa cells (n = 10) with (i) and without 

(ii) 635-nm irradiation (I). Increase in fluorescence of compound 7 in H2O with 5% BSA when 

irradiated with a Xenon arc lamp (J).  
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Table D.1. Optical Properties and Quantum Efficiencies of 1-7
a
 

 λmax (nm) λem (nm) ε (x10
4 

M
-1    

cm
-1

) Ф (x10
-4

) ε Ф  

(M
-1

cm
-1

) 

1
b
 515 526 7.1 9.9 70 

2
b
 553 576 4.9 23.8 117 

3 586 607 6.1 9.8 6.0 

4 633 650 6.0 6.9 4.1 

5  640 656 6.5 4.5 2.9 

6 

  

661 684 6.5 4.1 2.7 

7 667 N.D.
c
 12 -- -- 

a
 Quantum yields of acetic acid release (Ф) determined by ferrioxalate actinometry in MeOH with a 

532-nm ND:YAG laser source and release followed using quantitative LC-UV (Ф values are the 

average of 3 runs). 
b 

Values are taken from reference [40].  
c
 N.D. = not detectable. 
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D.7. Supporting Information for Appendix D 

Cell studies 

Cell sample preparation for fluorescence imaging  

In vivo cell experiments were performed with HeLa (human), GM07373 (bovine) or S2 (Drosophila) 

cells.  HeLa and GM07373 cells were cultured in DMEM medium supplemented with 10% fetal bovine 

serum, 12.5 mM streptomycin, and 36.5 mM penicillin (Fisher Scientific, Pittsburgh, PA) in a 37 °C 

water jacketed CO2 incubator (Thermo Scientific, Waltham, MA).  HeLa and GM07373 cells were sub-

cultured using 0.25% (w/v) trypsin-EDTA (Life Technology, Carlsbad, CA) solution every two days.  

Cells were sub-cultured onto custom-made glass bottom culture dishes two days before the microscopy 

experiment.  On the day of the microscopy experiment, the growth media was replaced with 20 µM 

compound 7 in serum-free DMEM for one hour.  Cells were rinsed with the imaging medium (pH = 7.2, 

155 mM NaCl, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, 2 mM NaH2PO4, 10 mM HEPES and 10 mM 

Glucose) prior to collecting microscopy images. S2 cells were cultured in Shields and Sang M3 insect 

medium (Sigma-Aldrich, St. Louis, MO) with heat-inactivated 12.5% fetal bovine serum (Irvine 

Scientific, Santa Ana, CA), 12.5 mM streptomycin, and 36.5 mM penicillin in a 22 °C incubator (Fisher 

Scientific, Pittsburgh, PA) [1, 2].  S2 cells were incubated with 20 µM of the compound 7 in M3 media 

for one hour and then washed twice with serum free M3 medium. Incubated S2 cells were allowed to 

spread on cover glass for half an hour at room temperature, and were then rinsed with BES buffer (pH = 

7.0) multiple times prior to collecting microscopy images. 

 

Live cell fluorescence imaging  

All microscopy experiments were performed on a Nikon Eclipse TE2000U microscope (Melville, NY) 

operating in wide-field, epi-fluorescence mode and equipped with a 100× Apo, 1.49 numerical aperture 

oil-immersion objective. HeLa or GM07373 cells were imaged at 36±2 ºC in a home-built housing 
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around the microscope. S2 cells were imaged at room temperature. For photolysis, the cells were 

illuminated with 635±15 nm wavelength light from a mercury lamp (X-Cite 120 PC, EXFO Photonic 

Solutions Inc., Mississauga, Ontario, Canada) operating at 100% lamp power. Increased fluorescence 

due to quencher release during the photolysis reaction was collected through excitation (425±45-nm) 

and emission (605±20-nm) filters from Omega Optical (XF304-1, Brattleboro, VT). Fluorescence 

images were collected every 2 minutes using a PhotonMAX 512 EMCCD camera (Princeton 

Instruments, Trenton, NJ) and WinView 2.6 imaging software (Princeton Instruments, Trenton, NJ). 

The control experiments were performed without the 635±15-nm light illumination. Images were further 

analyzed with ImageJ (National Institutes of Health) and IGOR Pro V 6.32A (WaveMetrices Inc., Lake 

Oswego, OR).  

 

Cytotoxicity assay 

HeLa, GM07373 and S2 cells were each incubated with 20 µM of the compound 7 for an hour. 

Cytotoxicity of the compound was measured using trypan blue exclusion assays [3]. Equal volumes of 

the cell suspension and 0.4% trypan blue stain (Thermo Scientific
TM

 Hyclone
TM

 Trypan Blue, Waltham, 

MA) were incubated for 3 minutes at room temperature. The number of viable cells that excluded the 

dye was counted using a hemacytometer (Hausser Bright-Line, Hausser scientific, Horsham, PA) and an 

optical microscope. 
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Figures and Tables 

 

 
 

 

 

Figure SD.1. Photocage release in Drosophila S2 cells. 
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Figure SD.2. Photocage release in bovine GM07373 cells. 
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Table SD.1. Cytotoxicity of compounds as measured with trypan blue exclusion assay. 

 % of Viable cells  

HeLa cells  

No treatment 90±3 

Cells incubated with 20 µM compound 7 92±5 

S2 cells  

No treatment 95±2 

Cells incubated with 20 µM compound 7 93±2 

GM07373 cells  

No treatment 90±1 

Cells incubated with 20 µM compound 7 92±5 

Uncertainty represents standard deviation from two measurements 
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